Purpose: Suprachoroidal hemorrhage (SCH) is a rare but severely feared sight-threatening complication of intraocular surgery, and its management remains debatable. We intended to summarize the existing surgical management options regarding perioperative SCH, describing different techniques and their respective visual outcomes.
Methods: A systematic literature search of articles published since 1st January 2011 until 31st December 2022 was performed using MEDLINE (PubMed) and Scopus.
Background: Long COVID is associated with multiple symptoms and impairment in multiple organs. Cross-sectional studies have reported cardiac impairment to varying degrees by varying methodologies. Using cardiac MR (CMR), we investigated a 12-month trajectory of abnormalities in Long COVID.
View Article and Find Full Text PDFOrganism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFβ) and Wnt pathways through mechanisms that are not well-defined.
View Article and Find Full Text PDFIntroduction And Objectives: In severe aortic stenosis (AS), the impact of aortic valve replacement (AVR) on left ventricular (LV) systolic function assessed by strain and measured by echocardiography or cardiac magnetic resonance (CMR) has been controversial. We aimed to investigate LV systolic myocardial function changes six months after AVR using global longitudinal (GLS), circumferential (GCS) and radial (GRS) strain derived from CMR imaging.
Methods: We included 39 severe AS patients (69.
Bone is a dynamic tissue that constantly adapts to changing mechanical demands. The transforming growth factor beta (TGFβ) signaling pathway plays several important roles in maintaining skeletal homeostasis by both coupling the bone-forming and bone-resorbing activities of osteoblasts and osteoclasts and by playing a causal role in the anabolic response of bone to applied loads. However, the extent to which the TGFβ signaling pathway in osteocytes is directly regulated by fluid shear stress (FSS) is unknown, despite work suggesting that fluid flow along canaliculi is a dominant physical cue sensed by osteocytes following bone compression.
View Article and Find Full Text PDFPoor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown.
View Article and Find Full Text PDFThe second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m.
View Article and Find Full Text PDFThe mammalian olfactory system provides great inspiration for the design of intelligent sensors. To this end, we have developed a bioinspired phage nanostructure-based color sensor array and a smartphone-based sensing network system. Using a M13 bacteriophage (phage) as a basic building block, we created structural color matrices that are composed of liquid-crystalline bundled nanofibers from self-assembled phages.
View Article and Find Full Text PDFPhysical and biochemical cues play fundamental roles in the skeleton at both the tissue and cellular levels. The precise coordination of these cues is essential for skeletal development and homeostasis, and disruption of this coordination can drive disease progression. The growth factor TGFβ is involved in both the regulation of and cellular response to the physical microenvironment.
View Article and Find Full Text PDFCell surface receptors are central to the cell's ability to generate coordinated responses to the multitude of biochemical and physical cues in the microenvironment. However, the mechanisms by which receptors enable this concerted cellular response remain unclear. To investigate the effect of cellular tension on cell surface receptors, we combined novel high-resolution imaging and single particle tracking with established biochemical assays to examine TGFβ signaling.
View Article and Find Full Text PDFInkjet printing of antibiotic- and calcium-eluting micropatterns was explored as a novel means of preventing the formation of biofilm colonies and facilitating osteogenic cell development on orthopedic implant surfaces. The micropatterns consisted of a periodic array of ∼50 μm circular dots separated by ∼150 μm. The composition of the micropatterns was controlled by formulating inks with rifampicin (RFP) and poly(D,L-lactic-co-glycolic) acid (PLGA) dissolved in an organic solvent with ∼100 nm biphasic calcium phosphate (BCP) nanoparticles suspended in the solution.
View Article and Find Full Text PDFThe maintenance of a calcium gradient and vesicle secretion in the apex of pollen tubes is essential for growth. It is shown here that phosphatidylinositol-4,5-bisphosphate (PIP2) and D-myo-inositol-1,4,5-trisphosphate (IP3), together with phosphatidic acid (PA), play a vital role in the regulation of these processes. Changes in the intracellular concentration of both PIP2 and IP3 (induced by photolysis of caged-probes), modified growth and caused reorientation of the growth axis.
View Article and Find Full Text PDFOur present understanding implicates both calmodulin (CaM) and 3',5'-cyclicAMP (cAMP) in the regulation of pollen tube growth. However, downstream molecules of these signalling pathways and the cellular processes they modulate remain largely unknown. In order to elucidate the role of CaM, we mapped its activity in growing pollen tubes.
View Article and Find Full Text PDF