Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce.
View Article and Find Full Text PDFBrain metastasis (BM) is one of the main complications of many cancers, and the most frequent malignancy of the central nervous system. Imaging studies of BMs are routinely used for diagnosis of disease, treatment planning and follow-up. Artificial Intelligence (AI) has great potential to provide automated tools to assist in the management of disease.
View Article and Find Full Text PDFDifferent evolutionary processes push cancers to increasingly aggressive behaviors, energetically sustained by metabolic reprogramming. The collective signature emerging from this transition is macroscopically displayed by positron emission tomography (PET). In fact, the most readily PET measure, the maximum standardized uptake value (SUV), has been found to have prognostic value in different cancers.
View Article and Find Full Text PDFBackground: Radiation necrosis (RN) is a frequent adverse event after fractionated stereotactic radiotherapy (FSRT) or single-session stereotactic radiosurgery (SRS) treatment of brain metastases (BMs). It is difficult to distinguish RN from progressive disease (PD) due to their similarities in the magnetic resonance images. Previous theoretical studies have hypothesized that RN could have faster, although transient, growth dynamics after FSRT/SRS, but no study has proven that hypothesis using patient data.
View Article and Find Full Text PDFIncreasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
Human cancers are biologically and morphologically heterogeneous. A variety of clonal populations emerge within these neoplasms and their interaction leads to complex spatiotemporal dynamics during tumor growth. We studied the reshaping of metabolic activity in human cancers by means of continuous and discrete mathematical models and matched the results to positron emission tomography (PET) imaging data.
View Article and Find Full Text PDFMost physical and other natural systems are complex entities composed of a large number of interacting individual elements. It is a surprising fact that they often obey the so-called scaling laws relating an observable quantity with a measure of the size of the system. Here we describe the discovery of universal superlinear metabolic scaling laws in human cancers.
View Article and Find Full Text PDFMany studies have built machine-learning (ML)-based prognostic models for glioblastoma (GBM) based on radiological features. We wished to compare the predictive performance of these methods to human knowledge-based approaches. 404 GBM patients were included (311 discovery and 93 validation).
View Article and Find Full Text PDFThe original version of this article, published on 15 October 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The name of Mariano Amo-Salas and the affiliation of Ismael Herruzo were presented incorrectly.
View Article and Find Full Text PDFObjectives: We wished to determine whether tumor morphology descriptors obtained from pretreatment magnetic resonance images and clinical variables could predict survival for glioblastoma patients.
Methods: A cohort of 404 glioblastoma patients (311 discoveries and 93 validations) was used in the study. Pretreatment volumetric postcontrast T1-weighted magnetic resonance images were segmented to obtain the relevant morphological measures.
Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected.
View Article and Find Full Text PDFAim: To assess the predictive and prognostic value of textural parameters in locally advanced breast cancer (LABC) obtained by F-FDG PET/CT.
Methods: Prospective study including 68 patients with LABC, neoadjuvant chemotherapy (NC) indication and a baseline F-FDG PET/CT. Breast specimens were grouped into molecular phenotypes and classified as responders or non-responders after completion of NC.