Publications by authors named "David Midgley"

Biogenic methane in subsurface coal seam environments is produced by diverse consortia of microbes. Although this methane is useful for global energy security, it remains unclear which microbes can liberate carbon from the coal. Most of this carbon is relatively resistant to biodegradation, as it is contained within aromatic rings.

View Article and Find Full Text PDF

Introduction: Lower limb ischaemia secondary to occlusion of a lower limb artery is a limb-threatening condition that can be effectively treated by catheter-directed thrombolysis (CDT). The purpose of this study was to examine treatment outcomes of CDT both at the time of treatment and ongoing patency up to 12 months following treatment. The secondary aim of the study was to investigate the influence of age of occlusion and treatment duration on success and complication rates.

View Article and Find Full Text PDF

One of the most abundant and ubiquitous taxa observed in eastern Australian coal seams is an uncultured species and part of the Coal Seam Microbiome dataset assigned as 'CSMB_57'. Despite this abundance and ubiquity, knowledge about this taxon is limited. The present study aimed to generate an enrichment culture of sp.

View Article and Find Full Text PDF

The production of methane as an end-product of organic matter degradation in the absence of other terminal electron acceptors is common, and has often been studied in environments such as animal guts, soils and wetlands due to its potency as a greenhouse gas. To date, however, the study of the biogeographic distribution of methanogens across coal seam environments has been minimal. Here, we show that coal seams are host to a diverse range of methanogens, which are distinctive to each geological basin.

View Article and Find Full Text PDF

Subsurface coal seams contain microbial consortia with various taxa, each with a different role in the degradation of coal organic matter. This study presents the sequenced and annotated genome of sp. strain CSMB_222, a bacterium isolated from eastern Australian coal seams.

View Article and Find Full Text PDF

Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood.

View Article and Find Full Text PDF

The global trend of transiting to more renewable energy sources requires transition fuels, such as coal seam gas, to supplement and secure energy needs. In order to optimise strategies and technologies for enhancing gas production, an understanding of the fundamental microbial processes and interactions would be advantageous. Models have recently begun mapping the microbial roles and interactions in coal seam environments, from direct coal degradation to methanogenesis.

View Article and Find Full Text PDF

Subsurface coal seams harbor an array of diverse microbial species subsisting as a community on the organic matter present in coal. Here, we present the annotated genome sequence of sp. strain SYD-A1, a bacterium isolated from a terrestrial subsurface coal seam in New South Wales, Australia.

View Article and Find Full Text PDF

Diverse microbial communities living in subsurface coal seams are responsible for important geochemical processes including the movement of carbon between the geosphere, biosphere and atmosphere. Microbial conversion of the organic matter in coal to methane involves a complex assemblage of bacteria and archaea working in syntrophic relationships. Despite the importance and value of this microbial process, very few of the microbial taxa have defined metabolic or ecological roles in these environments.

View Article and Find Full Text PDF

Microbes in subsurface coal seams are responsible for the conversion of the organic matter in coal to methane, resulting in vast reserves of coal seam gas. This process is important from both environmental and economic perspectives as coal seam gas is rapidly becoming a popular fuel source worldwide and is a less carbon intensive fuel than coal. Despite the importance of this process, little is known about the roles of individual bacterial taxa in the microbial communities carrying out this process.

View Article and Find Full Text PDF

Microbial communities in subsurface coal seams are responsible for the conversion of coal organic matter to methane. This process has important implications for both energy production and our understanding of global carbon cycling. Despite the environmental and economic importance of this process, little is known about which components of the heterogeneous coal organic matter are biodegradable under methanogenic conditions.

View Article and Find Full Text PDF

Introduction: Whole-metagenome sequencing can be a rich source of information about the structure and function of entire metagenomic communities, but getting accurate and reliable results from these datasets can be challenging. Analysis of these datasets is founded on the mapping of sequencing reads onto known genomic regions from known organisms, but short reads will often map equally well to multiple regions, and to multiple reference organisms. Assembling metagenomic datasets prior to mapping can generate much longer and more precisely mappable sequences but the presence of closely related organisms and highly conserved regions makes metagenomic assembly challenging, and some regions of particular interest can assemble poorly.

View Article and Find Full Text PDF

The subsurface represents a largely unexplored frontier in microbiology. Here, coal seams present something of an oasis for microbial life, providing moisture, warmth, and abundant fossilized organic material. Microbes in coal seams are thought to syntrophically mobilize fossilized carbon from the geosphere to the biosphere.

View Article and Find Full Text PDF

This study describes a novel ericoid mycorrhizal fungus (ErMF), Gamarada debralockiae Midgley and Tran-Dinh gen. nov. sp.

View Article and Find Full Text PDF

Elevated uranium dose (4 g kg) causes a shift in billabong sediment communities that result in the enrichment of five bacterial species. These taxa include Geobacter, Geothrix and Dyella species, as well as a novel-potentially predatory-Bacteroidetes species, and a new member of class Anaerolineae (Chloroflexi). Additionally, a population of methanogenic Methanocella species was also identified.

View Article and Find Full Text PDF

The red macroalga Asparagopsis taxiformis has been shown to significantly decrease methane production by rumen microbial communities. This has been attributed to the bioaccumulation of halogenated methane analogues produced as algal secondary metabolites. The objective of this study was to evaluate the impact of A.

View Article and Find Full Text PDF

Located in the Northern Territory of Australia, Ranger uranium mine is directly adjacent to the UNESCO World Heritage listed Kakadu National Park, with rehabilitation targets needed to ensure the site can be incorporated into the park following the mine's closure in 2026. This study aimed to understand the impact of uranium concentration on microbial communities, in order to identify and describe potential breakpoints in microbial ecosystem services. This is the first study to report in situ deployment of uranium-spiked sediments along a concentration gradient (0-4000 mg U kg ), with the study design maximising the advantages of both field surveys and laboratory manipulative studies.

View Article and Find Full Text PDF

Aspergillus hancockii sp. nov., classified in Aspergillus subgenus Circumdati section Flavi, was originally isolated from soil in peanut fields near Kumbia, in the South Burnett region of southeast Queensland, Australia, and has since been found occasionally from other substrates and locations in southeast Australia.

View Article and Find Full Text PDF

The prominent ericoid mycorrhizal fungus, Pezoloma ericae, has not been found in Australia to date. In the present study, internal transcribed spacer (ITS) data from the Biomes of Australia Soil Environments (BASE) was searched for evidence of P. ericae and other known ericoid mycorrhizal and root-associated taxa.

View Article and Find Full Text PDF

Unlabelled: We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s.

View Article and Find Full Text PDF

Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library.

View Article and Find Full Text PDF

Background And Aims: High-frequency gastric electrical stimulation (GES) has emerged as a therapy for gastroparesis, but the mechanism(s) of action remain unclear. There is a need to refine stimulation protocols for clinical benefit, but a lack of accurate techniques for assessing mechanisms in clinical trials, such as slow wave modulation, has hindered progress. We thereby aimed to assess acute slow wave responses to GES in gastroparesis patients using high-resolution (HR) (multi-electrode) mapping, across a range of stimulation doses achievable by the Enterra stimulation device (Medtronic Inc.

View Article and Find Full Text PDF
Article Synopsis
  • - Fungi play a crucial role in various ecosystems, and understanding their diversity is important for ecological studies.
  • - The study introduces the Warcup ITS training set, which helps researchers quickly isolate and classify fungal DNA using a specific genomic region (ITS) from metagenomic samples.
  • - By utilizing this training set with the RDP Bayesian Classifier, researchers can efficiently identify fungi down to the species level, using established taxonomic names and classifications.
View Article and Find Full Text PDF

The draft genome sequence of Ruminoclostridium sp. Ne3 was reconstructed from the metagenome of a hydrogenogenic microbial consortium growing on xylan. The organism is likely the primary hemicellulose degrader within the consortium.

View Article and Find Full Text PDF