Similar to the role of Markov decision processes in reinforcement learning, Markov games (also called stochastic games) lay down the foundation for the study of multi-agent reinforcement learning and sequential agent interactions. We introduce approximate Markov perfect equilibrium as a solution to the computational problem of finite-state stochastic games repeated in the infinite horizon and prove its -completeness. This solution concept preserves the Markov perfect property and opens up the possibility for the success of multi-agent reinforcement learning algorithms on static two-player games to be extended to multi-agent dynamic games, expanding the reign of the -complete class.
View Article and Find Full Text PDF