Aims: Our aim was to determine if ultrasound-guided HPV injection in mice would provide reproducible and reliable results, as is currently obtained via open laparotomy techniques, and offer a surgical refinement to emulate islet transplantation in humans.
Methods: Fluorescent-polymer microparticles (20 μm) were injected (27G-needle) into the HPV via open laparotomy (n = 4) or under ultrasound-guidance (n = 4) using an MX550D-transducer with a Vevo3100-scanner (FUJIFILM VisualSonics, Inc.).
Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeostasis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal system through modulation of mammalian HH signaling, we created a mouse model for specific loss of Ubr5 function in limb bud mesenchyme.
View Article and Find Full Text PDFFollowing myocardial infarction (MI), the adult heart has minimal regenerative potential. Conversely, the neonatal heart can undergo extensive regeneration, and neovascularization capacity was hypothesized to contribute to this difference. Here, we demonstrate the higher angiogenic potential of neonatal compared with adult mouse cardiac endothelial cells (MCECs) in vitro and use this difference to identify candidate microRNAs (miRs) regulating cardiac angiogenesis after MI.
View Article and Find Full Text PDFAutophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs that orchestrate genetic networks by modulating gene expression. Given their importance in vascular development, homeostasis and diseases, along with the technical feasibility in deploying their function , the so-called 'vascular miRNAs' have become key targets for therapeutic intervention. Herein, we have summarised the state-of-the-art on vascular miRNAs and we have discussed the role miRNA biogenesis and the extracellular vesicles (EVs) miRNA transport in vascular biology.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2018
Endothelial cell (EC) proliferation is a crucial event in physiological and pathological angiogenesis. MicroRNAs (miRNAs) have emerged as important modulators of the angiogenic switch. Here we conducted high-content screening of a human miRNA mimic library to identify novel regulators of EC growth systematically.
View Article and Find Full Text PDFBiochem Soc Trans
February 2018
MicroRNAs (miRNAs) are small non-coding RNAs of ∼22 nucleotides, which have increasingly been recognized as potent post-transcriptional regulators of gene expression. MiRNA targeting is defined by the complementarities between positions 2-8 of miRNA 5'-end with generally the 3'-untranslated region of target mRNAs (messenger RNAs). The capacity of miRNAs to simultaneously inhibit many different mRNAs allows for an amplification of biological responses.
View Article and Find Full Text PDFHedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity.
View Article and Find Full Text PDFIn this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole.
View Article and Find Full Text PDFOsteoclasts are highly specialized cells of haematopoietic lineage that are uniquely responsible for bone resorption. In the past, osteoclasts were isolated as mature cells from chicken long bones, or were generated using osteoblasts or stromal cells to induce osteoclast formation in total bone marrow from mice or rabbits. The Copernican revolution in osteoclast biology began with the identification of macrophage-colony stimulating factor (M-CSF) and receptor activator NFκB-ligand (RANKL ) as the key regulators of osteoclast formation, fusion and function.
View Article and Find Full Text PDFAutosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder attributed to reduced bone resorption by osteoclasts. Most human AROs are classified as osteoclast rich, but recently two subsets of osteoclast-poor ARO have been recognized as caused by defects in either TNFSF11 or TNFRSF11A genes, coding the RANKL and RANK proteins, respectively. The RANKL/RANK axis drives osteoclast differentiation and also plays a role in the immune system.
View Article and Find Full Text PDFOsteoclasts and their precursors have traditionally been considered difficult cells to transfect using standard approaches. Here, we describe several methods for transfection of mature osteoclasts and their precursors using the Amaxa™ Nucleofector system, lentiviruses, and adenoviruses.
View Article and Find Full Text PDFOsteoclasts are the specialised cells that resorb bone matrix and are important both for the growth and shaping of bones throughout development as well as during the process of bone remodelling that occurs throughout life to maintain a healthy skeleton. Osteoclast formation, function and survival are tightly regulated by a network of signalling pathways, many of which have been identified through the study of rare monogenic diseases, knockout mouse models and animal strains carrying naturally occurring mutations in key molecules. In this review, we describe the processes of osteoclast formation, activation and function and discuss the major transcription factors and signalling pathways (including those that control the cytoskeletal rearrangements) that are important at each stage.
View Article and Find Full Text PDFFamilial expansile osteolysis and related disorders are caused by heterozygous tandem duplication mutations in the signal peptide region of the gene encoding receptor activator of NF-κB (RANK), a receptor critical for osteoclast formation and function. Previous studies have shown that overexpression of these mutant proteins causes constitutive activation of NF-κB signaling in vitro, and it has been assumed that this accounts for the focal osteolytic lesions that are seen in vivo. We show here that constitutive activation of NF-κB occurred in HEK293 cells overexpressing wild-type or mutant RANK but not in stably transfected cell lines expressing low levels of each RANK gene.
View Article and Find Full Text PDFPaget's disease of bone (PDB) is a late-onset disorder characterised by focal areas of increased bone resorption, with osteoclasts that are increased in size, multinuclearity, number and activity. PDB-causing missense and nonsense variants in the gene encoding Sequestosome-1/p62 (SQSTM1) have been identified, all of which cluster in and around the ubiquitin-associated (UBA) domain of the protein. SQSTM1 is ubiquitously expressed and there is, as yet, no clear reason why these mutations only appear to cause an osteoclast-related phenotype.
View Article and Find Full Text PDFAutosomal-Recessive Osteopetrosis (ARO) comprises a heterogeneous group of bone diseases for which mutations in five genes are known as causative. Most ARO are classified as osteoclast-rich, but recently a subset of osteoclast-poor ARO has been recognized as due to a defect in TNFSF11 (also called RANKL or TRANCE, coding for the RANKL protein), a master gene driving osteoclast differentiation along the RANKL-RANK axis. RANKL and RANK (coded for by the TNFRSF11A gene) also play a role in the immune system, which raises the possibility that defects in this pathway might cause osteopetrosis with immunodeficiency.
View Article and Find Full Text PDF