Due to their high strength, low weight, and biologically-inspired dimensions, carbon nanotubes have found wide interest across all of medicine. In this study, four types of highly dispersible multi-walled carbon nanotubes (CNTs) of similar dimensions, but slightly different chemical compositions, were compared with an unmodified material to verify the impact their surface chemistry has on cytocompatibility, anticancer, inflammation, and antibacterial properties. Minute changes in the chemical composition were found to greatly affect the biological performance of the CNTs.
View Article and Find Full Text PDFGenetic medicine, including ribonucleic acid (RNA) therapy, has delivered numerous progresses to the treatment of diseases thanks to the development of lipid nanoparticles (LNPs) as a delivery vehicle. However, RNA therapeutics are still limited by the lack of safe, precise, and efficient delivery outside of the liver. Thus, to fully realize the potential of genetic medicine, strategies to arm LNPs with extrahepatic targeting capabilities are urgently needed.
View Article and Find Full Text PDFThe production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers.
View Article and Find Full Text PDFThe unique chemical and physical features of nanomaterials make them ideal for developing new and better sensing devices, particularly biosensors. Various types of nanoparticles, including metal, oxide, and semiconductor nanostructures, have been utilized to manufacture biosensors, and each kind of nanoparticle plays a unique role in the sensing system. Nanoparticles provide critical roles such as immobilizing biomolecules, catalyzing electrochemical processes, enhancing electron transport between electrode surfaces and proteins, identifying biomolecules, and even functioning as the reactant for the catalytic reaction.
View Article and Find Full Text PDFChalcogenide nanoparticles have become a very active field of research for their optoelectronic and biological properties. This article shows the production of tellurium dioxide nanoparticles (TeO NPs) by pulsed laser ablation in liquids. The produced nanoparticles were spherical with a diameter of around 70 nm.
View Article and Find Full Text PDFThe American Cancer Society estimated around 61,090 new cases of leukemia were diagnosed, and around 23,660 people died from this disease in the United States alone in 2021. Due to its burden on society, there is an unmet need to explore innovative approaches to overcome leukemia. Among different strategies that have been explored, nanotechnology appears to be a promising and effective approach for therapeutics.
View Article and Find Full Text PDFCancer is one of the biggest healthcare concerns in our century, a disease whose treatment has become even more difficult following reports of drug-resistant tumors. When this happens, chemotherapy treatments fail or decrease in efficiency, leading to catastrophic consequences to the patient. This discovery, along with the fact that drug resistance limits the efficacy of current treatments, has led to a new wave of discovery for new methods of treatment.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
Nanostructured silver (Ag) and gold (Au) are widely known to be potent biocidal and cytotoxic agents as well as biocompatible nanomaterials. It has been recently reported that combining both metals in a specific chemical composition causes a significant enhancement in their antibacterial activity against antibiotic-resistant bacterial strains, as well as in their anticancer effects, while preserving cytocompatibility properties. In this work, Ag/Au bimetallic nanoparticles over a complete atomic chemical composition range were prepared at 10 at% through a green, highly reproducible, and simple approach using starch as a unique reducing and capping agent.
View Article and Find Full Text PDFCRISPR diagnostics (CRISPR-Dx) offer a wide range of enhancements compared to traditional nanobiosensors by taking advantage of the excellent trans-cleavage activity of the CRISPR/Cas systems. However, the single-stranded DNA/RNA reporters of the current CRISPR-Dx suffer from poor stability and limited sensitivity, which make their application in complex biological environments difficult. In comparison, nanomaterials, especially metal nanoparticles, exhibits robust stability and desirable optical and electrocatalytical properties, which make them ideal as reporter molecules.
View Article and Find Full Text PDFBioceramics such as calcium silicate (Ca-Si), have gained a lot of interest in the biomedical field due to their strength, osteogenesis capability, mechanical stability, and biocompatibility. As such, these materials are excellent candidates to promote bone and tissue regeneration along with treating bone cancer. Bioceramic scaffolds, functionalized with appropriate materials, can achieve desirable photothermal effects, opening up a bifunctional approach to osteosarcoma treatments-simultaneously killing cancerous cells while expediting healthy bone tissue regeneration.
View Article and Find Full Text PDFThe rise of antimicrobial resistance to antibiotics (AMR) as a healthcare crisis has led to a tremendous social and economic impact, whose damage poses a significant threat to future generations. Current treatments either are less effective or result in further acquired resistance. At the same time, several new antimicrobial discovery approaches are expensive, slow, and relatively poorly equipped for translation into the clinical world.
View Article and Find Full Text PDFBismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased surface to volume ratio leading to potentially new applications. In this manuscript, we report for the very first time the synthesis of bismuth oxide (BiO) nano-flakes by pulsed laser ablation in liquids without any external assistance (no acoustic, electric field, or magnetic field).
View Article and Find Full Text PDFThe objective of the current study was to systematically review the anticancer activity of green synthesized gold nanoparticles (AuNPs) against hepatic cancer cells. The articles were identified through electronic databases, including PubMed, Scopus, Embase, Web of Science, Science Direct, ProQuest, and Cochrane. In total, 20 articles were found eligible to enter into our systematic review.
View Article and Find Full Text PDFCancer and antimicrobial resistance to antibiotics are two of the most worrying healthcare concerns that humanity is facing nowadays. Some of the most promising solutions for these healthcare problems may come from nanomedicine. While the traditional synthesis of nanomaterials is often accompanied by drawbacks such as high cost or the production of toxic by-products, green nanotechnology has been presented as a suitable solution to overcome such challenges.
View Article and Find Full Text PDFPhysicochemical, electrochemical and biological performance of 4 types of all-carbon nanotube layers was studied. Higher oxidation state of carbon was responsible for micro-scaled uniformity of the layers and excellent electrical conductivity, while nitrogen containing functional groups yielded materials with anisotropy similar to natural tissues and reduced work function. All materials were cytocompatible with mammalian fibroblasts (viability >80%, cytotoxicity <3% at day 7) and human dermal fibroblast (viability of cells >70% at day 1), while reducing bacterial and cancer cells proliferation without adding any drug.
View Article and Find Full Text PDF: Current brain cancer treatments, based on radiotherapy and chemotherapy, are sometimes successful, but they are not free of drawbacks.: Traditional methods for the treatment of brain tumors are discussed here with new solutions presented, among which the application of nanotechnology has demonstrated promising results over the past decade. The traditional synthesis of nanostructures, which relies on the use of physicochemical methodologies are discussed, and their associated concerns in terms of environmental and health impact due to the production of toxic by-products, need for toxic catalysts, and their lack of biocompatibility are presented.
View Article and Find Full Text PDFBreast cancer remains as a concerning global health issue, being the second leading cause of cancer deaths among women in the United States (US) in 2019. Therefore, there is an urgent and substantial need to explore novel strategies to combat breast cancer. A potential solution may come from the use of cancer nanotechnology, an innovative field of study which investigates the potential of nanomaterials for cancer diagnosis, therapy, and theranostic applications.
View Article and Find Full Text PDFRegenerative medicine aims to engineer tissue constructs that can recapitulate the functional and structural properties of native organs. Most novel regenerative therapies are based on the recreation of a three-dimensional environment that can provide essential guidance for cell organization, survival, and function, which leads to adequate tissue growth. The primary motivation in the use of conductive nanomaterials in tissue engineering has been to develop biomimetic scaffolds to recapitulate the electrical properties of the natural extracellular matrix, something often overlooked in numerous tissue engineering materials to date.
View Article and Find Full Text PDFCurrently, antibiotic resistance and cancer are two of the most important public health problems killing more than ∼1.5 million people annually, showing that antibiotics and current chemotherapeutics are not as effective as they were in the past. Nanotechnology is presented here as a potential solution.
View Article and Find Full Text PDFExpert Opin Drug Deliv
March 2020
: Current treatments for osteogenic disorders are often successful, however they are not free of drawbacks, such as toxicity or side effects. Nanotechnology offers a platform for drug delivery in the treatment of bone disorders, which can overcome such limitations. Nevertheless, traditional synthesis of nanomaterials presents environmental and health concerns due to its production of toxic by-products, the need for extreme and harsh raw materials, and their lack of biocompatibility over time.
View Article and Find Full Text PDFBacterial infections and cancer are two of the most significant concerns that the current healthcare system should tackle nowadays. Green nanotechnology is presented as a feasible solution that is able to produce materials with significant anticancer and antibacterial activity, while overcoming the main limitations of traditional synthesis. In the present work, orange, lemon and lime extracts were used as both reducing and capping agents for the green synthesis of tellurium nanoparticles (TeNPs) using a microwave-assisted reaction.
View Article and Find Full Text PDFBackground And Aim: Bimetallic silver/gold nanosystems are expected to significantly improve therapeutic efficacy compared to their monometallic counterparts by maintaining the general biocompatibility of gold nanoparticles (AuNPs) while, at the same time, decreasing the relatively high toxicity of silver nanoparticles (AgNPs) toward healthy human cells. Thus, the aim of this research was to establish a highly reproducible one-pot green synthesis of colloidal AuNPs and bimetallic Ag/Au alloy nanoparticles (NPs; Ag/AuNPs) using starch as reducing and capping agent.
Methods: The optical properties, high reproducibility, stability and particle size distribution of the colloidal NPs were analyzed by ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and -potential.
Nanocolumnar titanium coatings have been fabricated in two sputtering systems with very different characteristics (a laboratory setup and semi-industrial equipment), thus possessing different morphologies (150 nm long columns tilted 20° from the normal and 300 nm long ones tilted 40°, respectively). These coatings exhibit similar antibacterial properties against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria. When a synergic route is followed and these coatings are functionalized with tellurium (Te) nanorods, the antibacterial properties are enhanced, especially for the long nanocolumns case.
View Article and Find Full Text PDFAntimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics.
View Article and Find Full Text PDF