Publications by authors named "David Mechin"

A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core.

View Article and Find Full Text PDF

A low-loss suspended core As(38)Se(62) fiber with core diameter of 4.5 μm and a zero-dispersion wavelength of 3.5 μm was used for mid-infrared supercontinuum generation.

View Article and Find Full Text PDF

An original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized.

View Article and Find Full Text PDF

We theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (T(FWHM)=3.5ps, P0=20kW, ν(R)=30MHz, and P(avg)=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses how pump-induced photodarkening (PD) reduces the lifetime of ytterbium-doped aluminosilicate fibers over time.
  • It establishes a linear relationship between lifetime reduction at an equilibrium state and the losses caused by PD, indicating that higher losses correlate with shorter lifetimes.
  • The research also notes a squared-law relationship between lifetime reduction and dopant concentration, suggesting that adjusting the rate equations can enhance their accuracy, and it examines how different pump power levels affect the fluorescence lifetime based on different levels of inversion.
View Article and Find Full Text PDF

In this work, the influence of photodarkening (PD) and photobleaching (PB) on the lasing features of the ytterbium-doped aluminosilicate fiber lasers is examined. Simultaneous PD and PB with 633 nm irradiation was monitored at the lasing wavelength of 1070 nm and compared with individually caused PD and PB effects. The variation of laser threshold and slope efficiency was reported.

View Article and Find Full Text PDF

A compact second-order Stokes Brillouin fiber laser made of microstructured chalcogenide fiber is reported for the first time. This laser required very low pump power for Stokes conversion: 6 mW for first order lasing and only 30 mW for second order lasing with nonresonant pumping. We also show linewidth-narrowing as well as intensity noise reduction for both the 1st and 2nd order Stokes component when compared to that of the pump source.

View Article and Find Full Text PDF

We report on all-optical wavelength conversion of a 56 Gb/s differential quadrature phase shift keying signal and a 42.7 Gb/s on-off keying signal. Wavelength conversion is based on four-wave mixing effect in a 1 m long highly nonlinear GeAsSe chalcogenide fiber.

View Article and Find Full Text PDF

Relative intensity noise and frequency noise have been measured for the first time for a single-frequency Brillouin chalcogenide As38Se62 fiber laser. This is also the first demonstration of a compact suspended-core fiber Brillouin laser, which exhibits a low threshold power of 22 mW and a slope efficiency of 26% for nonresonant pumping.

View Article and Find Full Text PDF

We report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As(38)Se(62).With a core diameter as small as 1.

View Article and Find Full Text PDF

The present work describes photodarkening from the viewpoint of cooperative luminescence. The temporal evolution of both effects was measured simultaneously by means of ytterbium doped aluminosilicate fibers for concentrations up to 1.8 wt% Yb3+.

View Article and Find Full Text PDF
Article Synopsis
  • The investigation focused on photodarkening in Yb-doped silica fibers, analyzing how different Yb concentrations affect light loss.
  • Researchers ensured consistent conditions across all fiber samples, which revealed a limited variation in fitting parameters, indicating a reliable method for comparison.
  • The findings suggest a square law relationship between excited ion concentration and loss, along with self-similarity in loss evolution, paving the way for a new figure of merit to assess photodarkening's impact on laser and amplifier performance.
View Article and Find Full Text PDF

We report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes.

View Article and Find Full Text PDF

We report here the first demonstration of a mode-locked fiber laser delivering parabolic pulses (similaritons) at 1534 nm. The use of a Raman-based gain medium potentially allows its implementation at any wavelength. The 22nJ output similariton pulses have a true parabolic shape both in the time and spectral domains and a linear chirp.

View Article and Find Full Text PDF

Self-similar propagation of linearly chirped hyperbolic-secant pulses in a comblike decreasing-dispersion fiber amplifier has been observed experimentally for the first time to our knowledge. The scheme takes advantage of an exact solution of the generalized nonlinear Schrödinger equation with distributed coefficients.

View Article and Find Full Text PDF