Publications by authors named "David McKemy"

Article Synopsis
  • Genetic Basis of Migraine
  • : Migraine is largely polygenic, with many genetic variants identified through genome-wide association studies. Key mutations are linked to the TRPM8 channel, which senses cold but may have different activation mechanisms related to migraine.
  • Role of Artemin and GFRα3
  • : The study explores how the neurotrophic factor artemin and its receptor GFRα3 influence migraine-related pain through their effects on TRPM8, potentially affecting cold sensitivity and pain responses in migraine models.
  • Preclinical Findings
  • : Experiments on mice show that GFRα3 is crucial for mechanical sensitivity in migraine, as blocking artemin reduces migraine-like symptoms, highlighting its significance in
View Article and Find Full Text PDF
Article Synopsis
  • Migraine is influenced by genetics, with most cases being polygenic, which means they are linked to multiple genetic variants, particularly involving the TRPM8 channel, important for sensing cold.
  • The study explores the role of the neurotrophic factor artemin and its receptor GFRα3 in migraine pain using rodent models, looking at how various treatments affect pain sensitivity.
  • Results highlight the connection between GFRα3 and migraine-induced mechanical allodynia and show that blocking artemin can reduce migraine-like symptoms, indicating a significant neurotrophic pathway involvement.
View Article and Find Full Text PDF

The detection of environmental temperatures is critical for survival, yet inappropriate responses to thermal stimuli can have a negative impact on overall health. The physiological effect of cold is distinct among somatosensory modalities in that it is soothing and analgesic, but also agonizing in the context of tissue damage. Inflammatory mediators produced during injury activate nociceptors to release neuropeptides, such as calcitonin gene-related peptide (CGRP) and substance P, inducing neurogenic inflammation, which further exasperates pain.

View Article and Find Full Text PDF

Unlabelled: The detection of environmental temperatures is critical for survival, yet inappropriate responses to thermal stimuli can have a negative impact on overall health. The physiological effect of cold is distinct among somatosensory modalities in that it is soothing and analgesic, but also agonizing in the context of tissue damage. Inflammatory mediators produced during injury activate nociceptors to release neuropeptides, such as CGRP and substance P, inducing neurogenic inflammation which further exasperates pain.

View Article and Find Full Text PDF

We describe a purified biochemical system to produce monoclonal antibodies (Abs) in vitro using activation-induced deoxycytidine deaminase (AID) and DNA polymerase η (Polη) to diversify immunoglobulin variable gene (IgV) libraries within a phage display format. AID and Polη function during B-cell affinity maturation by catalyzing somatic hypermutation (SHM) of immunoglobulin variable genes (IgV) to generate high-affinity Abs. The IgV mutational motif specificities observed in vivo are conserved in vitro.

View Article and Find Full Text PDF

Migraine is a complex neurovascular disorder that is one of the leading causes of disability and a reduced quality of life. Even with such a high societal impact, our understanding of the cellular and molecular mechanisms that contribute to migraine headaches is limited. To address this complex disorder, several groups have performed genome-wide association studies to elucidate migraine susceptibility genes, with many identifying transient receptor potential melastatin 8 (TRPM8), a cold-sensitive cation channel expressed in peripheral afferents innervating the trigeminovascular system, and the principal mediator of cold and cold pain associated with injury and disease.

View Article and Find Full Text PDF

The proper detection and behavioral response to painfully cold temperatures is critical for avoiding potentially harmful tissue damage. Cold allodynia and hyperalgesia, pain associated with innocuous cooling and exaggerated pain with noxious cold, respectively, are common in patients with chronic pain. In peripheral somatosensory afferents, the ion channels transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) are candidate receptors for innocuous and noxious cold temperatures, respectively.

View Article and Find Full Text PDF

Chemotherapy induced peripheral neuropathy (CIPN), a toxic side effect of some cancer treatments, negatively impacts patient outcomes and drastically reduces survivor's quality of life (QOL). Uncovering the mechanisms driving chemotherapy-induced CIPN is urgently needed to facilitate the development of effective treatments, as currently there are none. Observing that C57BL/6 (B6) and 129SvEv (129) mice are respectively sensitive and resistant to Paclitaxel-induced pain, we investigated the involvement of the gut microbiota in this extreme phenotypic response.

View Article and Find Full Text PDF

Of somatosensory modalities cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30°C. Until recently, how cold produces this myriad of biologic effects was unknown.

View Article and Find Full Text PDF

Treatment of pain with local anesthetics leads to an unfavorable decrease in general sensory acuity due to their indiscriminate block of both pain sensing (nociceptors) and non-pain sensing nerves. However, the cell impermeant lidocaine derivative QX-314 can be selectively targeted to only nociceptors by permeation through ligand-gated cation channels. Here we show that localized injection of QX-314 with agonists for the menthol receptor TRPM8 specifically blocks cold-evoked behaviors in mice, including cold allodynia and hyperalgesia.

View Article and Find Full Text PDF

Cooling or the application of mentholated liniments to the skin has been used to treat itch for centuries, yet remarkably little is known about how counter-stimuli such as these induce itch relief. Indeed, there is no clear consensus in the scientific literature as to whether or not cooling does in fact block the transduction of itch signals or if it is simply a placebo effect. This gap in our understanding led us to hypothesize that cooling is antipruritic and, like cooling analgesia, requires function of the cold-gated ion channel TRPM8, a receptor for menthol expressed on peripheral afferent nerve endings.

View Article and Find Full Text PDF

While most membrane channels are only capable of passing small ions, certain non-selective cation channels have been recently shown to have the capacity to permeate large cations. The mechanisms underlying large molecule permeation are unclear, but this property has been exploited pharmacologically to target molecules, such as nerve conduction blockers, to specific subsets of pain-sensing neurons (nociceptors) expressing the heat-gated transient receptor potential (TRP) channel TRPV1. However, it is not clear if the principal mediator of cold stimuli TRPM8 is capable of mediating the permeation large molecules across cell membranes, suggesting that TRPM8-positive nerves cannot be similarly targeted.

View Article and Find Full Text PDF

Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs.

View Article and Find Full Text PDF

Myelin oligodendrocyte glycoprotein (MOG) is a central nervous system myelin-specific molecule expressed on the outer lamellae of myelin. To date, the exact function of MOG has remained unknown, with MOG knockout mice displaying normal myelin ultrastructure and no apparent specific phenotype. In this paper, we identify nerve growth factor (NGF) as a binding partner for MOG and demonstrate that this interaction is capable of sequestering NGF from TrkA-expressing neurons to modulate axon growth and survival.

View Article and Find Full Text PDF

Over a decade and a half of intensive study has shown that the Transient Receptor Potential family ion channels TRPV1 and TRPM8 are the primary sensors of heat and cold temperatures in the peripheral nervous system. TRPV homologues and TRPA1 are also implicated, but recent genetic evidence has diminished their significance in thermosensation and suggests that a number of newly identified thermosensitive channels, including TRPM3, two-pore potassium channels, and the chloride channel Ano1, require further consideration. In addition to novel thermostransducers, recent genetic and pharmacological approaches have begun to elucidate the afferent neurocircuits underlying temperature sensation, continuing the rapid expansion in our understanding of the cellular and molecular basis of thermosensation that began with the discovery of TRPV1 and TRPM8.

View Article and Find Full Text PDF

Transient receptor potential melastatin 8 (TRPM8) ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized TRPM8-positive (+) neurons in the trigeminal ganglion and investigated the distribution of TRPM8+ axons and terminals, and their synaptic organization in the TSN and in the DH using light and electron microscopic immunohistochemistry in transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. TRPM8 was expressed in a fraction of small myelinated primary afferent fibers (23.

View Article and Find Full Text PDF

Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Thermal pain is mediated by channels of the transient receptor potential (TRP) family, including the cold and menthol receptor TRPM8.

View Article and Find Full Text PDF

Blood glucose concentration is tightly regulated by the rate of insulin secretion and clearance, a process partially controlled by sensory neurons serving as metabolic sensors in relevant tissues. The activity of these neurons is regulated by the products of metabolism which regulate transmitter release, and recent evidence suggests that neuronally expressed ion channels of the transient receptor potential (TRP) family function in this critical process. Here, we report the novel finding that the cold and menthol-gated channel TRPM8 is necessary for proper insulin homeostasis.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin-8 (TRPM8), a recently identified member of the transient receptor potential (TRP) family of ion channels, is activated by mild cooling and by chemical compounds such as the supercooling agent, icilin. Since cooling, possibly involving TRPM8 stimulation, diminishes injury-induced peripheral inflammation, we hypothesized that TRPM8 activation may also attenuate systemic inflammation. We thus studied the involvement of TRPM8 in regulating colonic inflammation using two mouse models of chemically induced colitis.

View Article and Find Full Text PDF

Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches.

View Article and Find Full Text PDF

Many primary sensory neurons are polymodal, responding to multiple stimulus modalities (chemical, thermal, or mechanical), yet each modality is recognized differently. Although polymodality implies that stimulus encoding occurs in higher centers, such as the spinal cord or brain, recent sensory neuron ablation studies find that behavioral responses to different modalities require distinct subpopulations, suggesting the existence of modality-specific labeled lines at the level of the sensory afferent. Here we provide evidence that neurons expressing TRPM8, a cold- and menthol-gated channel required for normal cold responses in mammals, represents a labeled line solely for cold sensation.

View Article and Find Full Text PDF

A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a mouse model of the intermediate form of the disease would provide an additional research tool amenable for drug discovery. In addition, many of the previously engineered SMA strains are multi-allelic by design, containing a combination of transgenes and targeted mutations in the homozygous state, making further genetic manipulation difficult.

View Article and Find Full Text PDF

TRPM8 (Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically.

View Article and Find Full Text PDF

The proper detection of environmental temperatures is essential for the optimal growth and survival of organisms of all shapes and phyla, yet only recently have the molecular mechanisms for temperature sensing been elucidated. The discovery of temperature-sensitive ion channels of the transient receptor potential (TRP) superfamily has been pivotal in explaining how temperatures are sensed in vivo, and here we will focus on the lone member of this cohort, TRPM8, which has been unequivocally shown to be cold sensitive. TRPM8 is expressed in somatosensory neurons that innervate peripheral tissues such as the skin and oral cavity, and recent genetic evidence has shown it to be the principal transducer of cool and cold stimuli.

View Article and Find Full Text PDF

In the current issue, Mishra and colleagues demonstrate that mice lacking somatosensory neurons in the TRPV1 lineage are completely insensitive to thermal stimuli, including both hot and cold temperatures.

View Article and Find Full Text PDF