IEEE J Biomed Health Inform
March 2025
Glaucoma, a leading cause of irreversible blindness, necessitates early detection for accurate and timely intervention to prevent irreversible vision loss. In this study, we present a novel deep learning framework that leverages the diagnostic value of 3D Optical Coherence Tomography (OCT) imaging for automated glaucoma detection. In this framework, we integrate a pre-trained Vision Transformer on retinal data for rich slice-wise feature extraction and a bidirectional Gated Recurrent Unit for capturing inter-slice spatial dependencies.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2022
Cardiovascular diseases (CVDs) are one of the most prevalent causes of premature death. Early detection is crucial to prevent and address CVDs in a timely manner. Recent advances in oculomics show that retina fundus imaging (RFI) can carry relevant information for the early diagnosis of several systemic diseases.
View Article and Find Full Text PDFAutomated emotion recognition in the wild from facial images remains a challenging problem. Although recent advances in deep learning have assumed a significant breakthrough in this topic, strong changes in pose, orientation, and point of view severely harm current approaches. In addition, the acquisition of labeled datasets is costly and the current state-of-the-art deep learning algorithms cannot model all the aforementioned difficulties.
View Article and Find Full Text PDFWe present a protocol related to a video-tracking technique based on the background subtraction and image thresholding that makes it possible to individually track cohoused animals. We tested the tracking routine with four cohoused Norway lobsters (Nephrops norvegicus) under light-darkness conditions for 5 days. The lobsters had been individually tagged.
View Article and Find Full Text PDFWe introduce a computer vision problem from social cognition, namely, the automated detection of attitudes from a person's spontaneous facial expressions. To illustrate the challenges, we introduce two simple algorithms designed to predict observers' preferences between images (e.g.
View Article and Find Full Text PDFEvaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2009
This paper introduces a novel binary discriminative learning technique based on the approximation of the nonlinear decision boundary by a piecewise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points-points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule.
View Article and Find Full Text PDFFace recognition applications commonly suffer from three main drawbacks: a reduced training set, information lying in high-dimensional subspaces, and the need to incorporate new people to recognize. In the recent literature, the extension of a face classifier in order to include new people in the model has been solved using online feature extraction techniques. The most successful approaches of those are the extensions of the principal component analysis or the linear discriminant analysis.
View Article and Find Full Text PDFPsychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information.
View Article and Find Full Text PDF