La Palma island is located in the NW of the Canary Islands and is one of the most volcanically active of the archipelago, therefore the existence of geothermal resources on the island is highly probable. The main objective of this work is to detect velocity anomalies potentially related to active geothermal reservoirs on La Palma island, by achieving a high-resolution seismic velocity model of the first few kilometres of the crust using Ambient Noise Tomography (ANT). The obtained ANT model is merged with a recent local earthquake tomography model.
View Article and Find Full Text PDFOn Sept. 19th, 2021, a volcanic eruption began on the island of La Palma (Canary Islands, Spain). The pre-eruptive episode was characterized by seismicity and ground deformation that started only 9.
View Article and Find Full Text PDFFor the first time, we obtained high-resolution images of Earth's interior of the La Palma volcanic eruption that occurred in 2021 derived during the eruptive process. We present evidence of a rapid magmatic rise from the base of the oceanic crust under the island to produce an eruption that was active for 85 days. This eruption is interpreted as a very accelerated and energetic process.
View Article and Find Full Text PDFThe study of geothermal systems is nowadays a topic of great importance because of the huge amount of energy that could be converted in electricity for human consumption from such sources. Among the various geophysical methods employed to study geothermal reservoirs, the magnetotelluric (MT) method is capable to reveal the internal structures of the subsurface and interpret the geological structures from the electrical resistivity. We present the first 3D resistivity model of La Palma (Canary archipelago, Spain) obtained from a dataset of 44 broadband magnetotelluric soundings distributed around the island.
View Article and Find Full Text PDF