Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men.
View Article and Find Full Text PDFSilver nanoparticles (Ag NPs) are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products may lead to an increase in toxic levels of environmental silver, but regulatory control over the use or disposal of such products is lagging due to insufficient assessment on the toxicology of Ag NPs and their rate of release into the environment. In this article we discuss recent research on the transport, activity and fate of Ag NPs at the cellular and organismic level, in conjunction with traditional and recently established methods of nanoparticle characterization.
View Article and Find Full Text PDFWe report the design, development, and implementation of an improved instrumentation approach for frequency-domain fluorescence lifetime (FDFL) optrodic sensing without a concurrent reference LED. FDFL traditionally uses a reference LED, at approximately the same wavelength as the sensor fluorophore emission, to measure phase shifts associated with changes in the fluorescence lifetime of fluorophore. For this work we used an oxygen optrode to design, develop, and test the reference-LED-free FDFL approach.
View Article and Find Full Text PDFThis paper presents a review of microtechnologies relevant to applications in cellular physiology, including biochips, electrochemical sensors and optrodic sensing techniques. Microelectrodes have been the main tools for measuring cellular electrophysiology, oxygen, nitric oxide, neurotransmitters, pH and various ions. Optical fiber sensing methods, such as indicator-based optrodes, with fluorescence lifetime measurement, are now emerging as viable alternatives to electroanalytical chemistry.
View Article and Find Full Text PDF