Publications by authors named "David Mansell"

A chemoenzymatic approach providing access to all four intermediates in the peppermint biosynthetic pathway between limonene and menthone/isomenthone, including noncommercially available intermediates (-)- trans-isopiperitenol (2), (-)-isopiperitenone (3), and (+)- cis-isopulegone (4), is described. Oxidation of (+)-isopulegol (13) followed by enolate selenation and oxidative elimination steps provides (-)-isopiperitenone (3). A chemical reduction and separation route from (3) provides both native (-)- trans-isopiperitenol (2) and isomer (-)- cis-isopiperitenol (18), while enzymatic conjugate reduction of (-)-isopiperitenone (3) with IPR [(-)-isopiperitenone reductase)] provides (+)- cis-isopulegone (4).

View Article and Find Full Text PDF

Protochlorophyllide (Pchlide), an intermediate in the biosynthesis of chlorophyll, is the substrate for the light-driven enzyme protochlorophyllide oxidoreductase. Pchlide has excited-state properties that allow it to initiate photochemistry in the enzyme active site, which involves reduction of Pchlide by sequential hydride and proton transfer. The basis of this photochemical behavior has been investigated here using a combination of time-resolved spectroscopies and density functional theory calculations of a number of Pchlide analogues with modifications to various substituent groups.

View Article and Find Full Text PDF

Efficient and cost effective nicotinamide cofactor regeneration is essential for industrial-scale bio-hydrogenations employing flavin-containing biocatalysts such as the Old Yellow Enzymes. A direct flavin regeneration system using visible light to initiate a photoredox cycle and drive biocatalysis is described, and shown to be effective in driving biocatalytic activated alkene reduction. Using Ru(ii) or Ir(iii) complexes as photosensitizers, coupled with an electron transfer mediator (methyl viologen) and sacrificial electron donor (triethanolamine) drives catalytic turnover of two Old Yellow Enzymes with multiple oxidative substrates.

View Article and Find Full Text PDF

Menthol isomers are high-value monoterpenoid commodity chemicals, produced naturally by mint plants, Mentha spp. Alternative clean biosynthetic routes to these compounds are commercially attractive. Optimization strategies for biocatalytic terpenoid production are mainly focused on metabolic engineering of the biosynthesis pathway within an expression host.

View Article and Find Full Text PDF

Biocatalytic propane production: structure-based engineering of aldehyde-deformylating oxygenase improves specificity for short- and medium-chain-length aldehydes and enhances the propane generation in whole-cell biotransformations. This presents new opportunities for developing biocatalytic modules for the production of volatile "drop-in" biofuels.

View Article and Find Full Text PDF

The application of biocatalysis for the asymmetric reduction of activated C=C is a powerful tool for the manufacture of high-value chemical commodities. The biocatalytic potential of "-ene" reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases is well-known; however, the specificity of these enzymes toward mainly small molecule substrates has highlighted the need to discover "-ene" reductases from different enzymatic classes to broaden industrial applicability. Here, we describe the characterization of a flavin-free double bond reductase from (NtDBR), which belongs to the leukotriene B dehydrogenase (LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase superfamily of enzymes.

View Article and Find Full Text PDF

The light-driven enzyme protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers.

View Article and Find Full Text PDF

Enzymes are natural catalysts, controlling reactions with typically high stereospecificity and enantiospecificity in substrate selection and/or product formation. This makes them useful in the synthesis of industrially relevant compounds, particularly where highly enantiopure products are required. The flavoprotein pentaerythritol tetranitrate (PETN) reductase is a member of the Old Yellow Enzyme family, and catalyses the asymmetric reduction of β-alkyl-β-arylnitroalkenes.

View Article and Find Full Text PDF

Using biomimetic chemical reduction or Clostridium perfringens cell extract containing azoreductase, the dimer-fluorescent probe 2,4-O-bisdansyl-6,7-diazabicyclooct-6-ene, which possesses a conformationally constrained cis-azo bridge, is reduced to the tetra-equatorial 2,4-O-bisdansyl-cyclohexyl-3,5-bisammonium salt which exhibits fluorescence indicative of a dansyl monomer.

View Article and Find Full Text PDF

We have conducted a site-specific saturation mutagenesis study of H181 and H184 of flavoprotein pentaerythritol tetranitrate reductase (PETN reductase) to probe the role of these residues in substrate binding and catalysis with a variety of α,β-unsaturated alkenes. Single mutations at these residues were sufficient to dramatically increase the enantiopurity of products formed by reduction of 2-phenyl-1-nitropropene. In addition, many mutants exhibited a switch in reactivity to predominantly catalyse nitro reduction, as opposed to CC reduction.

View Article and Find Full Text PDF

Novel non-nucleobase-derived inhibitors of the angiogenic enzyme, thymidine phosphorylase, have been identified using molecular modelling, synthesis and biological evaluation. These inhibitors are 2,4,5-trioxoimidazolidines bearing N-(substituted)phenylalkyl groups, together with, in most cases, N'-(CH(2))(n)-carboxylic acid, ester or amide side chains. The best compound from this series is 3-(2,4,5-trioxo-3-phenylethyl-imidazolodin-1-yl)propionamide, with an IC(50) of 40 μM against Escherichia coli TP.

View Article and Find Full Text PDF

This work describes the development of an automated robotic platform for the rapid screening of enzyme variants generated from directed evolution studies of pentraerythritol tetranitrate (PETN) reductase, a target for industrial biocatalysis. By using a 96-well format, near pure enzyme was recovered and was suitable for high throughput kinetic assays; this enabled rapid screening for improved and new activities from libraries of enzyme variants. Initial characterisation of several single site-saturation libraries targeted at active site residues of PETN reductase, are described.

View Article and Find Full Text PDF

myo-Inositol phosphates possessing the 1,2,3-trisphosphate motif share the remarkable ability to completely inhibit iron-catalysed hydroxyl radical formation. The simplest derivative, myo-inositol 1,2,3-trisphosphate [Ins(1,2,3)P(3)], has been proposed as an intracellular iron chelator involved in iron transport. The binding conformation of Ins(1,2,3)P(3) is considered to be important to complex Fe(3+) in a 'safe' manner.

View Article and Find Full Text PDF

Natural myo-inositol phosphate antioxidants containing the 1,2,3-trisphosphate motif bind Fe(3+) in the unstable penta-axial conformation.

View Article and Find Full Text PDF

Mammalian cells contain a pool of iron that is not strongly bound to proteins, which can be detected with fluorescent chelating probes. The cellular ligands of this biologically important "chelatable", "labile" or "transit" iron are not known. Proposed ligands are problematic, because they are saturated by magnesium under cellular conditions and/or because they are not "safe", i.

View Article and Find Full Text PDF

N-Alkylated tryptamines have complex psychoactive properties. Routes for clandestine synthesis are described on Internet websites one of which involves the thermolytic decarboxylation of tryptophan to tryptamine as a precursor to psychoactive compounds. High boiling solvents and ketone catalysts have been employed to facilitate the decarboxylation of tryptophan.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrsfir9ide7cu0o5rbc3l2k4c973dvlfo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once