Publications by authors named "David Malaspina"

In space plasmas, large-amplitude Alfvén waves can drive compressive perturbations, accelerate ion beams, and lead to plasma heating and the excitation of ion acoustic waves at kinetic scales. This energy channeling from fluid to kinetic scales represents a complementary path to the classical turbulent cascade. Here, we present observational and computational evidence to validate this hypothesis by simultaneously resolving the fluid-scale Alfvén waves, kinetic-scale ion acoustic waves, and their imprints on ion velocity distributions in the Earth's magnetopause boundary layer.

View Article and Find Full Text PDF

Experimental results show that the presence of a concentration gradient of certain nano-ions (most notably cobaltabisdicarbollide ([-COSAN] anions), induce a current across intact artificial phospholipid bilayers in spite of the high Born free energy estimated for these ions. The mechanism underlying this observed translocation of nano-anions across membranes has yet to be determined. Here we show, using molecular dynamics simulations, that the permeation of [-COSAN] anions across a lipid bilayer proceeds in a cooperative manner.

View Article and Find Full Text PDF

Spacecraft data reveal a nonuniform ambipolar electric field transverse to the magnetic field in a thin current sheet in Earth's magnetotail that leads to intense E×B velocity shear and nongyrotropic particle distributions. The E×B drift far exceeds the diamagnetic drift and thus drives observed lower hybrid waves. The shear-driven waves are localized to the magnetic field reversal region and are therefore ideally suited for the anomalous dissipation necessary for reconnection.

View Article and Find Full Text PDF

Plasma convection in the Earth's magnetosphere from the distant magnetotail to the inner magnetosphere occurs largely in the form of mesoscale flows, i.e., discrete enhancements in the plasma flow with sharp dipolarizations of magnetic field.

View Article and Find Full Text PDF

A prominent feature of coronaviruses is the presence of a large glycoprotein spike protruding from a lipidic membrane. This glycoprotein spike determines the interaction of coronaviruses with the environment and the host. In this paper, we perform all atomic molecular dynamics simulations of the interaction between the SARS-CoV-2 trimeric glycoprotein spike and surfaces of materials.

View Article and Find Full Text PDF

We provide experimental and theoretical understanding on fundamental processes taking place at room temperature when a fluorinated fullerene dopant gets close to a metal surface. By employing scanning tunneling microscopy and photoelectron spectroscopies, we demonstrate that the on-surface integrity of CF depends on the interaction with the particular metal it approaches. Whereas on Au(111) the molecule preserves its chemical structure, on more reactive surfaces such as Cu(111) and Ni(111), molecules interacting with the bare metal surface lose the halogen atoms and transform to C.

View Article and Find Full Text PDF

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U.

View Article and Find Full Text PDF

Cobaltabisdicarbollide (COSAN) anions have an unexpectedly rich self-assembly behavior, which can lead to vesicles and micelles without having a classical surfactant molecular architecture. This was rationalized by the introduction of new terminology and novel driving forces. A key aspect in the interpretation of COSAN behavior is the assumption that the most stable form of these ions is the transoid rotamer, which lacks a "hydrophilic head" and a "hydrophobic tail".

View Article and Find Full Text PDF

In the past decade, profuse research efforts explored the uses of iron oxide particles in nanomedicine. To a great extent, the efficiency and fate of those magnetic nanoparticles depend on how their surfaces interface with the proteins in a physiological environment. It is well reported how an ungoverned protein corona can be detrimental to cellular uptake and targeting efficiency and how it can modify the nanoparticles biodistribution.

View Article and Find Full Text PDF

Loading in cartilage is supported primarily by fibrillar collagen, and damage will impair the function of the tissue, leading to pathologies such as osteoarthritis. Damage is initiated by two types of matrix metalloproteinases, collagenase and gelatinase, that cleave and denature the collagen fibrils in the tissue. Experimental and modeling studies have revealed insights into the individual contributions of these two types of MMPs, as well as the mechanical response of intact fibrils and fibrils that have experienced random surface degradation.

View Article and Find Full Text PDF

The study of nanocellulose is a field of growing interest due to its many applications and its use in the development of biocompatible and eco-friendly materials. In spite of the vast number of studies in the field, many questions about the role of the molecular structure in the properties of cellulose are still subject of debate. One of these fundamental questions is the possible amphiphilic nature of cellulose and the relative role of hydrogen bonding and hydrophobic effect on the interactions of cellulose.

View Article and Find Full Text PDF
Article Synopsis
  • The MMS satellites are providing high-resolution data that reveals detailed physics of dipolarization fronts formed after magnetic reconnection.
  • A new kinetic analysis indicates that global plasma compression leads to distinct particle distributions and electron-ion separation in a narrow boundary layer.
  • Small-scale kinetic effects drive plasma dynamics in these fronts, influencing the acceleration of particles and the generation of unique broadband emissions.
View Article and Find Full Text PDF

In this work we study the behaviour at interfaces and the micelle self-assembly of a cationic surfactant (CTAB) by Molecular Dynamics (MD) simulations of coarse-grained models. We consider both the standard (with explicit water) Martini force field and the implicit solvent version of the Martini force field (Dry Martini). First, we study the behaviour of CTAB at a water/vacuum interface, at a water/organic solvent interface and in a pre-assembled CTAB micelle using both standard and Dry Martini and all-atomic simulations.

View Article and Find Full Text PDF

Ligand-receptor binding is of utmost importance in several biologically related disciplines. Ligand binding assays (LBA) use the high specificity and high affinity of ligands to detect, target or measure a specific receptors. One particular example of ligand binding assays are Antibody conjugated Nanoparticles (AcNPs), edge-cutting technologies that are present in several novel biomedical approaches for imaging, detection and treatment of diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different functional groups on parallel flat surfaces affect electrostatic interactions, focusing on charged, hydrophobic, and hydrophilic groups.
  • The local environment's influence is analyzed, as hydrophobic areas can either repel water (enhancing charge attraction) or attract it (weakening charge interactions) by screening the electrostatics.
  • Simulations reveal that hydrophobic groups enhance charge attraction during self-assembly by promoting water removal near charged areas, aligning with recent findings on protein binding dynamics.
View Article and Find Full Text PDF

Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes.

View Article and Find Full Text PDF

By combining the local structure index with potential energy minimisations we study the local environment of the water molecules for a couple of water models, TIP5P-Ew and SPC/E, in order to characterise low- and high-density "species". Both models show a similar behaviour within the supercooled regime, with two clearly distinguishable populations of unstructured and structured molecules, the fraction of the latter increasing with supercooling. Additionally, for TIP5P-Ew, we find that the structured component vanishes quickly at the normal liquid regime (above the melting temperature).

View Article and Find Full Text PDF

Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere.

View Article and Find Full Text PDF

HLA-haploidentical family donors represent a valuable option for children requiring allogeneic hematopoietic stem cell transplantation (HSCT). Because graft-versus-host diseases (GVHD) is a major complication of HLA-haploidentical HSCT because of alloreactive T cells in the graft, different methods have been used for ex vivo T cell depletion. Removal of donor αβ T cells, the subset responsible for GVHD, and of B cells, responsible for post-transplantation lymphoproliferative disorders, have been recently developed for HLA-haploidentical HSCT.

View Article and Find Full Text PDF

Transmission of HIV across mucosal barriers accounts for the majority of HIV infections worldwide. Thus, efforts aimed at enhancing protective immunity at these sites are a top priority, including increasing virus-specific antibodies (Abs) and antiviral activity at mucosal sites. Mucin proteins, including the largest cell-associated mucin, mucin 16 (MUC16), help form mucus to provide a physical barrier to incoming pathogens.

View Article and Find Full Text PDF

Intravaginal ring technology is generally limited to releasing low molecular weight species that can diffuse through the ring elastomer. To increase the diversity of drugs that can be delivered from intravaginal rings, we designed an IVR that contains a drug matrix encapsulated in the core of the IVR whereby the mechanism of drug release is uncoupled from the interaction of the drug with the ring elastomer. We call the device a flux controlled pump, and it is comprised of compressed pellets of a mixture of drug and hydroxypropyl cellulose within the hollow core of the ring.

View Article and Find Full Text PDF

Using extensive molecular dynamics simulations combined with a novel approach to analyze the molecular displacements we analyzed the change in the dynamics above and below the crossover temperature T(x) for supercooled water. Our findings suggest that the crossover from fragile to strong glass former occurring at T(x) is related with a change in the diffusion mechanism evidencing the presence of jump-like diffusion at lower temperatures. Also we observe that fluctuations of the local environments are intimately connected with fluctuations in the size and the amount of cooperative cluster of mobile molecules, and in particular we find a highly cooperative nature of the motion at low temperatures.

View Article and Find Full Text PDF

The temperature scale of simple water models in general does not coincide with the natural one. Therefore, in order to make a meaningful evaluation of different water models, a temperature rescaling is necessary. In this paper, we introduce a rescaling using the melting temperature and the temperature corresponding to the maximum of the heat capacity to evaluate four common water models (TIP4P-Ew, TIP4P-2005, TIP5P-Ew and Six-Sites) in the supercooled regime.

View Article and Find Full Text PDF