Manufacturing has been the key factor limiting rollout of vaccination during the COVID-19 pandemic, requiring rapid development and large-scale implementation of novel manufacturing technologies. ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) is an efficacious vaccine against SARS-CoV-2, based upon an adenovirus vector. We describe the development of a process for the production of this vaccine and others based upon the same platform, including novel features to facilitate very large-scale production.
View Article and Find Full Text PDFIn this work, we report on the incorporation of a siloxane copolymer additive, poly((2-phenylethyl) methylsiloxane)-co(1-phenylethyl) methylsiloxane)-co-dimethylsiloxane), which is fully soluble at room temperature, in a rapid-cure thermoset polyester coating formulation. The additive undergoes polymerization-induced phase segregation (PIPS) to self-assemble on the coating surface as discrete discoid nanofeatures during the resin cure process. Moreover, the copolymer facilitates surface co-segregation of titanium dioxide pigment microparticulate present in the coating.
View Article and Find Full Text PDFIntroduction: Mammalian cells like Chinese hamster ovary (CHO) cells are routinely used for production of recombinant therapeutic proteins. Cells require a continuous supply of energy and nutrients to sustain high cell densities whilst expressing high titres of recombinant proteins. Cultured mammalian cells are primarily dependent on glucose and glutamine metabolism for energy production.
View Article and Find Full Text PDFWrinkled patterns, which possess an extensive surface area over a limited planar space, can provide surface features ranging across the nano- and microscale that have become an engineering material with the flexibility to be tuneable for a number of technologies. Here, we investigate the surface parameters that influence the attachment response of two model bacteria (P. aeruginosa and S.
View Article and Find Full Text PDFManaging the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity.
View Article and Find Full Text PDFUnlabelled: The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals.
View Article and Find Full Text PDFWith an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host.
View Article and Find Full Text PDFWhile insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences.
View Article and Find Full Text PDFStudies of microbial interactions during motility, micro-structuring and colonisation have predominately been limited to surface associated bacteria involving materials such as semi-solid biomolecular hydrogels and thin liquid films. Recently, these surfaces have been extended to synthetic polymers where they provide defined chemistries and structural properties. However, precise details of microbial ingress into the confined fluid volume of synthetic 3-D hydrogel networks and their subsequent microstructuring remain to be defined.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2015
The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities.
View Article and Find Full Text PDFAliphatic crystallites, characteristic of the eicosane and docosane components of naturally occurring lipids, were found to form microtextures that were structured by specific interactions with ordered graphite (HOPG) used as the underlying substratum, as confirmed by scanning electron microscopy (SEM) and fast Fourier transform (FFT) analysis. Confocal scanning laser microscopy (CLSM) showed highly directed bacterial alignment for two bacterial species (spherical and rod-shaped), reflecting the preferential orientation of the crystallite-air-water interfaces to give linear and triangular bacterial patterning. The mechanisms of bacterial attachment are demonstrated in terms of the balance between effective radial adhesional forces and the capillary forces resulting from the water contact angle of the bacteria at the three-phase line (TPL) of the lipid surface.
View Article and Find Full Text PDFIn this study, we describe a biodegradable vaccine depot which persists in vivo for at least 4-months, provides synergistic adjuvant effects and also allows dose sparing of both antigen and adjuvant. A single administration results in immediate release of a priming dose of vaccine, by a process of syneresis, which is then followed by release of remaining vaccine which maintains robust antibody levels that last for more than a year. The platform technology comprises two aqueous components; one contains chitosan and hydroxyapatite, in which the vaccine is incorporated, and the other consists of a crosslinking agent, tripolyphosphate (TPP) and chondroitin sulphate.
View Article and Find Full Text PDFTransient gene expression (TGE) in CHO cells is utilized to produce material for use in early stage drug development. These systems typically utilize the cytomegalovirus (CMV) promoter to drive recombinant gene transcription. In this study, we have mechanistically dissected CMV-mediated TGE in CHO cells in order to identify the key regulators of this process.
View Article and Find Full Text PDFMicroscale devices are increasingly being developed for diagnostic analysis although conventional lysis as an initial step presents limitations due to its scale or complexity. Here, we detail the physical response of erythrocytes to the surface nanoarchitecture of black Si (bSi) and foreshadow their potential in microanalysis. The physical interaction brought about by the spatial convergence of the two topologies: (a) the nanopillar array present on the bSi and (b) the erythrocyte cytoskeleton present on the red blood cells (RBCs), provides spontaneous stress-induced cell deformation, rupture and passive lysis within an elapsed time of ∼3 min from immobilisation to rupture and without external chemical or mechanical intervention.
View Article and Find Full Text PDFWe describe for the first time the creation of a library of 140 synthetic promoters specifically designed to regulate the expression of recombinant genes in CHO cells. Initially, 10 common viral promoter sequences known to be active in CHO cells were analyzed using bioinformatic sequence analysis programs to determine the identity and relative abundance of transcription factor regulatory elements (TFREs; or transcription factor binding sites) they contained. Based on this, 28 synthetic reporters were constructed that each harbored seven repeats of a discrete TFRE sequence upstream of a minimal CMV core promoter element and secreted alkaline phosphatase (SEAP) reporter gene.
View Article and Find Full Text PDFBlack silicon is a synthetic nanomaterial that contains high aspect ratio nanoprotrusions on its surface, produced through a simple reactive-ion etching technique for use in photovoltaic applications. Surfaces with high aspect-ratio nanofeatures are also common in the natural world, for example, the wings of the dragonfly Diplacodes bipunctata. Here we show that the nanoprotrusions on the surfaces of both black silicon and D.
View Article and Find Full Text PDFTranscription-factor decoys are short synthetic oligodeoxynucleotides that sequester cognate transcription factors and prevent their binding at target promoters. Current methods of decoy formation have primarily been optimized for potential therapeutic applications. However, they are not ideally suited to in vitro investigations into multi-transcription factor-mediated processes that may require multiple regulatory elements to be inhibited in varying combinations.
View Article and Find Full Text PDFStructurally related surfactant molecules were exploited to generate chitosan emulsions to provide systematic variation in micelle radii of curvature and size. These compositions provide precise control of chitosan particle dispersity, that is, size distribution according to three quantitative distribution parameters as well as shape distribution. This resulted in a suite of particle size distributions spanning 71 nm to 3.
View Article and Find Full Text PDFIt has become increasingly recognized that polymer particle size can have a profound effect on the interactions of particle-based vaccines with antigen presenting cells (APCs) thereby influencing and modulating ensuing immune responses. With the aim of developing chitosan particle-based immunocontraceptive vaccines, we have compared the use of chitosan-based nanoparticles and chitosan-based microparticles as vaccine delivery vehicles for vaccine candidates based on luteinizing hormone-releasing hormone (LHRH). Particles, functionalized with chloroacetyl groups, which allows the covalent attachment of thiol-containing antigens, were able to adsorb ~60-70% of their weight of peptide-based antigen and 10-20% of their weight of protein-based antigen.
View Article and Find Full Text PDFBacterial meningitis is an infection of the thin membranes covering the brain and spinal cord by a number of microorganisms including Neisseria meningitidis, which can lead to permanent neurological damage in the event of late diagnosis. Given the quick onset and severity of the disease, there is a clear need for a rapid, sensitive and specific diagnostic technique. Here, we describe the development and evaluation of an acoustic wave sensor, the quartz crystal microbalance (QCM), as a rapid immunosensor employing antibodies against the cell surface outer membrane protein 85 (OMP85) of N.
View Article and Find Full Text PDFCurrent methods for the accurate diagnosis of influenza based on culture of the virus or PCR are highly sensitive and specific but require specialised laboratory facilities and highly trained personnel and, in the case of viral culture, can take up to 14 days to obtain a definitive result. In this study, a quartz crystal microbalance-based immunosensor (QCM) has been developed and its potential evaluated for the rapid and sensitive detection of both influenza A and B viruses in laboratory-cultured preparations and clinical samples. The effective limit for detection by QCM for stock preparations of both A/PR/8/34 and B/Lee/40 viruses was 1 x 10(4) pfu/mL, associated with observed frequency shifts of 30 (+/-5) and 37 (+/-6.
View Article and Find Full Text PDFThe purpose of this study was to compare the effects of two practical precooling techniques (skin cooling vs. skin + core cooling) on cycling time trial performance in warm conditions. Six trained cyclists completed one maximal graded exercise test (VO2(peak) 71.
View Article and Find Full Text PDFDespite the complex phenomena involved in encoding template molecule information within stable synthetic polymers to yield selective and efficient molecular recognition processes, molecularly imprinted polymers (MIP) are increasingly finding broad areas of application. Molecular interactions, both during the polymerization of the functional monomers in the presence of the template and during the processes of specific recognition after template removal, are key determinants of an effective MIP. Covalent and noncovalent template imprinting have been employed to achieve specific recognition sites.
View Article and Find Full Text PDFA method for the evaluation of quantities that are experimentally inaccessible such as the surface tension at the solid-vacuum interface and the superficial tension of the fluid in contact with the solid is presented. The approach is based on consideration of an equilibrium of a fluid in solid capillary wherein a balance between surface and capillary forces has been replaced by conceptual alternative interfacial and centrifugal forces. This approach involves the simultaneous numerical solution one the special forms of the Gibbs equation for solid-fluid interface and a generalized Kelvin equation derived earlier.
View Article and Find Full Text PDF