Publications by authors named "David Mahns"

Article Synopsis
  • FA2 tactile afferents, associated with Pacinian corpuscles, are specialized for detecting high-frequency vibrations, unlike other afferents that focus on lower frequencies.
  • In this study, researchers used methods to block local tactile input and tested how well FA2 afferents could still perceive flutter-range frequencies (~20 Hz) on different skin types.
  • Findings showed that even when local receptors were blocked, the perception of flutter-range frequencies remained consistent, indicating that FA2-PC systems can encode this type of frequency without relying on inputs from low-frequency receptors.
View Article and Find Full Text PDF

The nociceptive withdrawal reflex (NWR) is a protective limb withdrawal response triggered by painful stimuli, used to assess spinal nociceptive excitability. Conventionally, the NWR is understood as having two reflex responses: a short-latency Aβ-mediated response, considered tactile, and a longer-latency Aδ-mediated response, considered nociceptive. However, nociceptors with conduction velocities similar to Aβ tactile afferents have been identified in human skin.

View Article and Find Full Text PDF

Background: Zinc transport proteins (ZIP and ZnT), metallothioneins (MT) and protein kinase CK2 are involved in dysregulation of zinc homeostasis in breast and prostate cancer cells. Following up our previous research, we targeted ZIP12, ZnT1, MT2A and CK2 in this study by investigating their expression levels and protein localisation.

Methods: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence confocal microscopy were employed to quantify the expression of ZIP12, ZnT1, MT2A and CK2 subunits in a panel of breast and prostate cell lines without or with extracellular zinc exposure.

View Article and Find Full Text PDF

Zinc dyshomeostasis is manifested in breast and prostate cancer cells. This study attempted to uncover the molecular details prodded by the change of extracellular zinc by employing a panel of normal and cancerous breast and prostate cell lines coupled with the top-down proteomics with two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. The protein samples were generated from MCF-7 breast cancer cells, MCF10A normal breast cells, PC3 prostate cancer cells, and RWPE-1 normal prostate cells with or without exogenous zinc exposure in a time course ( and ).

View Article and Find Full Text PDF

The PIEZO2 ion channel is critical for transducing light touch into neural signals but is not considered necessary for transducing acute pain in humans. Here, we discovered an exception - a form of mechanical pain evoked by hair pulling. Based on observations in a rare group of individuals with PIEZO2 deficiency syndrome, we demonstrated that hair-pull pain is dependent on PIEZO2 transduction.

View Article and Find Full Text PDF
Article Synopsis
  • Electric-field stimulation can enhance nerve regeneration but existing methods often involve invasive circuitry that may harm surrounding tissues.
  • A new technique utilizes a graft-antenna—an external metal ring around the damaged nerve—powered by magnetic stimulation, eliminating the need for electrodes or internal components.
  • Research includes a computational model and in-vivo studies on rats, demonstrating that sufficient magnetic stimulation can activate nerves via the graft-antenna, although a gap between the antenna and nerve may decrease activation effectiveness.
View Article and Find Full Text PDF

Introduction: Despite strong epidemiological evidence that dietary factors modulate cancer risk, cancer control through dietary intervention has been a largely intractable goal for over sixty years. The effect of tumour genotype on synergy is largely unexplored.

Methods: The effect of seven dietary phytochemicals, quercetin (0-100 μM), curcumin (0-80 μM), genistein, indole-3-carbinol (I3C), equol, resveratrol and epigallocatechin gallate (EGCG) (each 0-200 μM), alone and in all paired combinations om cell viability of the androgen-responsive, pTEN-null (LNCaP), androgen-independent, pTEN-null (PC-3) or androgen-independent, pTEN-positive (DU145) prostate cancer (PCa) cell lines was determined using a high throughput alamarBlue assay.

View Article and Find Full Text PDF

Introduction: The role of pain as a warning system necessitates a rapid transmission of information from the periphery for the execution of appropriate motor responses. The nociceptive withdrawal reflex (NWR) is a physiological response to protect the limb from a painful stimulus and is often considered an objective measure of spinal nociceptive excitability. The NWR is commonly defined by its latency in the presumed A-fiber range consistent with the canonical view that "fast pain" is signaled by A nociceptors.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis.

View Article and Find Full Text PDF

Introduction: Recent published clinical trial safety data showed that 41% of Alzheimer patients experienced amyloid-related imaging abnormalities (ARIA), marks of microhemorrhages and edema in the brain, following administration of Biogen's Aduhelm/aducanumab (amino acids 3-7 of the Aβ peptide). Similarly, Janssen/Pfizer's Bapineuzumab (amino acids 1-5 of the Aβ peptide) and Roche's Gantenerumab (amino acids 2-11/18-27 of the Aβ peptide) also displayed ARIA in clinical trials, including microhemorrhage and focal areas of inflammation or vasogenic edema, respectively. The molecular mechanisms underlying ARIA caused by therapeutic anti-Aβ antibodies remain largely unknown, however, recent reports demonstrated that therapeutic anti-prion antibodies activate neuronal allergenic proteomes following cross-linking cellular prion protein.

View Article and Find Full Text PDF

Zn2+ dyshomeostasis is an intriguing phenomenon in breast and prostate cancers, with breast cancer cells exhibiting higher intracellular Zn2+ level compared to their corresponding normal epithelial cells, in contrast to the low Zn2+ level in prostate cancer cells. In order to gain molecular insights into the zinc homeostasis of breast and prostate cancer cells, this study profiled the expression of 28 genes, including 14 zinc importer genes (SLC39A1-14) that encode Zrt/Irt-like proteins 1-14 to transport Zn2+ into the cytoplasm, 10 zinc exporter genes (SLC30A1-10) which encode Zn2+ transporters 1-10 to transport Zn2+ out of the cytoplasm, and 4 metallothionein genes (MT1B, MT1F, MT1X, MT2A) in breast (MCF10A, MCF-7, MDA-MB-231) and prostate (RWPE-1, PC3, DU145) cell lines in response to extracellular zinc exposures at a mild cytotoxic dosage and a benign dosage. The RNA samples were prepared at 0 min (T0), 30 min (T30), and 120 min (T120) in a time course with or without zinc exposure, which were used for profiling the baseline and dynamic gene expression.

View Article and Find Full Text PDF

A change in visual perception is a frequent early symptom of multiple sclerosis (MS), the pathoaetiology of which remains unclear. Following a slow demyelination process caused by 12 weeks of low-dose (0.1%) cuprizone (CPZ) consumption, histology and proteomics were used to investigate components of the visual pathway in young adult mice.

View Article and Find Full Text PDF

In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear.

View Article and Find Full Text PDF

GFAP-IL6 transgenic mice are characterised by astroglial and microglial activation predominantly in the cerebellum, hallmarks of many neuroinflammatory conditions. However, information available regarding the proteome profile associated with IL-6 overexpression in the mouse brain is limited. This study investigated the cerebellum proteome using a top-down proteomics approach using 2-dimensional gel electrophoresis followed by liquid chromatography-coupled tandem mass spectrometry and correlated these data with motor deficits using the elevated beam walking and accelerod tests.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a demyelinating disease of the human central nervous system having an unconfirmed pathoetiology. Although animal models are used to mimic the pathology and clinical symptoms, no single model successfully replicates the full complexity of MS from its initial clinical identification through disease progression. Most importantly, a lack of preclinical biomarkers is hampering the earliest possible diagnosis and treatment.

View Article and Find Full Text PDF

Minocycline, a tetracycline-class of antibiotic, has been tested with mixed effectiveness on neuromuscular disorders such as amyotrophic lateral sclerosis, autoimmune neuritis and muscular dystrophy. The independent effect of minocycline on skeletal muscle force production and signalling remain poorly understood. Our aim here is to investigate the effects of minocycline on muscle mass, force production, myosin heavy chain abundance and protein synthesis.

View Article and Find Full Text PDF

We have previously shown that during muscle pain induced by infusion of hypertonic saline (HS), concurrent application of vibration and gentle brushing to overlying and adjacent skin regions increases the overall pain. In the current study, we focused on muscle-muscle interactions and tested whether HS-induced muscle pain can be modulated by innocuous/sub-perceptual stimulation of adjacent, contralateral, and remote muscles. Psychophysical observations were made in 23 healthy participants.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates.

View Article and Find Full Text PDF

Aim: To use an animal model of migraine to test whether migraine headache might arise from a brainstem-trigeminal nucleus pathway.

Methods: We measured evoked and spontaneous activity of second-order trigeminovascular neurons in rats to test whether the activity of these neurons increased following the induction of cortical spreading depression or the imposition of light flash - two potential migraine triggers, or headache provokers. We then tested whether drugs that could activate, or inactivate, neurons of the nucleus raphe magnus or the periaqueductal gray matter, would affect any such increases selectively for the dura mater.

View Article and Find Full Text PDF

Cuprizone (CPZ)-feeding in mice induces atrophy of peripheral immune organs (thymus and spleen) and suppresses T-cell levels, thereby limiting its use as a model for studying the effects of the immune system in demyelinating diseases such as Multiple Sclerosis (MS). To investigate whether castration () can protect the peripheral immune organs from CPZ-induced atrophy and enable T-cell recruitment into the central nervous system (CNS) following a breach of the blood-brain barrier (BBB), three related studies were carried out. In Study 1, prevented the dose-dependent reductions (0.

View Article and Find Full Text PDF

Background: Hyperalgesia is a heightened pain response to a noxious stimulus and is a hallmark of many common neuropathic and chronic pain conditions. In a double-blind placebo-controlled drug-crossover trial, the effects of concomitant and delayed minocycline treatment on the initiation and resolution of muscle hyperalgesia were tested.

Methods: An initial cohort (n = 10) received repeated injections (5 µg: days 0, 2 and 4) of nerve growth factor (NGF) in the flexor carpi ulnaris muscle of the forearm and pressure pain thresholds were collected at day 0 (control), day 7 (peak) and day 14 (recovery).

View Article and Find Full Text PDF

Feeding cuprizone (CPZ) to mice causes demyelination and reactive gliosis in the central nervous system (CNS), hallmarks of some neurodegenerative diseases like multiple sclerosis. However, relatively little is known regarding the behavioural deficits associated with CPZ-feeding and much of what is known is contradictory. This study investigated whether 37 days oral feeding of 0.

View Article and Find Full Text PDF

Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.

View Article and Find Full Text PDF

Oxaliplatin-induced neuropathic pain limits treatment compliance. However, the variability of neuropathic pain symptoms in each cycle for individual patients and the impacts on treatment compliance remain untested. Data from 322 adult patients who received oxaliplatin-based chemotherapy were extracted based on pattern of chemotherapy, adverse events, and patient survival.

View Article and Find Full Text PDF

The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation.

View Article and Find Full Text PDF