Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca release during store Ca overload, a process known as store overload-induced Ca release (SOICR).
View Article and Find Full Text PDFPhospholamban (PLN) is an effective inhibitor of the sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA). Here, we examined PLN stability and degradation in primary cultured mouse neonatal cardiomyocytes (CMNCs) and mouse hearts using immunoblotting, molecular imaging, and [(35)S]methionine pulse-chase experiments, together with lysosome (chloroquine and bafilomycin A1) and autophagic (3-methyladenine and Atg5 siRNA) antagonists. Inhibiting lysosomal and autophagic activities promoted endogenous PLN accumulation, whereas accelerating autophagy with metformin enhanced PLN degradation in CMNCs.
View Article and Find Full Text PDFMuscle spindles from the hind limb muscles of adult Ryr1(I4895T/wt) (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis.
View Article and Find Full Text PDFWhole exome sequencing (WES) was used to determine the primary cause of muscle disorder in a family diagnosed with a mild, undetermined myopathy and malignant hyperthermia (MH) susceptibility (MHS). WES revealed the compound heterozygous mutations, p.Ile235Asn and p.
View Article and Find Full Text PDFVariably protease-sensitive prionopathy (VPSPr) can occur in persons of all codon 129 genotypes in the human prion protein gene (PRNP) and is characterized by a unique biochemical profile when compared with other human prion diseases. We investigated transmission properties of VPSPr by inoculating transgenic mice expressing human PRNP with brain tissue from 2 persons with the valine-homozygous (VV) and 1 with the heterozygous methionine/valine codon 129 genotype. No clinical signs or vacuolar pathology were observed in any inoculated mice.
View Article and Find Full Text PDFRyanodine receptors (RyRs) are large tetrameric calcium (Ca(2+)) release channels found on the sarcoplasmic reticulum that respond to dihydropyridine receptor activity through a direct conformational interaction and/or indirect Ca(2+) sensitivity, propagating sarcoplasmic reticulum luminal Ca(2+) release in the process of excitation-contraction coupling. There are three human RyR subtypes, and several debilitating diseases are linked to heritable mutations in RyR1 and RyR2 including malignant hypothermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Despite the recent appreciation that many disease-associated mutations within the N-terminal RyRABC domains (i.
View Article and Find Full Text PDFBackground: Malignant hyperthermia (MH, MIM# 145600) is a complex pharmacogenetic disorder that is manifested in predisposed individuals as a potentially lethal reaction to volatile anesthetics and depolarizing muscle relaxants. Studies of CASQ1-null mice have shown that CASQ1, encoding calsequestrin 1, the major Ca2+ binding protein in the lumen of the sarcoplasmic reticulum, is a candidate gene for MH in mice. The aim of this study was to establish whether the CASQ1 gene is associated with MH in the North American population.
View Article and Find Full Text PDFCentral core disease, one of the most common congenital myopathies in humans, has been linked to mutations in the RYR1 gene encoding the Ca(2+) release channel of the sarcoplasmic reticulum (RyR1). Functional analyses showed that disease-associated RYR1 mutations led to impairment of skeletal muscle Ca(2+) homeostasis; however, thorough understanding of the molecular mechanisms underlying central core disease and other RyR1-related conditions is still lacking. We screened by sequencing the complete RYR1 transcripts in ten unrelated patients with central core disease and identified five novel, p.
View Article and Find Full Text PDFThe ryanodine receptor (RyR) is a large, homotetrameric sarcoplasmic reticulum membrane protein that is essential for Ca(2+) cycling in both skeletal and cardiac muscle. Genetic mutations in RyR1 are associated with severe conditions including malignant hyperthermia (MH) and central core disease. One phosphorylation site (Ser 2843) has been identified in a segment of RyR1 flanked by two RyR motifs, which are found exclusively in all RyR isoforms as closely associated tandem (or paired) motifs, and are named after the protein itself.
View Article and Find Full Text PDFMany studies suggest that quality childcare can positively influence children's outcomes in a wide range of domains, including mental health. While an extensive literature on the effects of childcare on individual children exists, how quality childcare programs contribute to trends at the population-level is yet to be established. In this study, we examine community differences in the quality of childcare and the mental health of children attending childcare centres in three communities in British Columbia, Canada.
View Article and Find Full Text PDFSarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG).
View Article and Find Full Text PDFPurpose: Malignant hyperthermia (MH) is an autosomal dominant pharmacogenetic disorder that is manifested on exposure of susceptible individuals to halogenated anesthetics or succinylcholine. Since MH is associated primarily with mutations in the ryanodine receptor type 1 (RYR1) gene, the purpose of this study was to determine the distribution and frequency of MH causative RyR1 mutations in the Canadian MH susceptible (MHS) population.
Methods: In this study, we screened a representative cohort of 36 unrelated Canadian MHS individuals for RYR1 mutations by sequencing complete RYR1 transcripts and selected regions of CACNA1S transcripts.
The ryanodine receptor type 1 (RyR1) is a homotetrameric Ca(2+) release channel located in the sarcoplasmic reticulum of skeletal muscle where it plays a role in the initiation of skeletal muscle contraction. A soluble, 6×-histidine affinity-tagged cytosolic fragment of RyR1 (amino acids 1-4243) was expressed in HEK-293 cells, and metal affinity chromatography under native conditions was used to purify the peptide together with interacting proteins. When analyzed by gel-free liquid chromatography mass spectrometry (LC-MS), 703 proteins were identified under all conditions.
View Article and Find Full Text PDFThe type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations.
View Article and Find Full Text PDFThis review focuses on muscle disorders and diseases caused by defects in the Ca(2+) release channels of the sarcoplasmic reticulum, the ryanodine receptors, and in the luminal, low affinity, high capacity Ca(2+)-binding proteins, calsequestrins. It provides a time line over the past half century of the highlights of research on malignant hyperthermia (MH), central core disease (CCD) and catecholaminergic polymorphic ventricular tachycardia (CPVT), that resulted in the identification of the ryanodine receptor (RYR), calsequestrin (CASQ) and dihydropyridine receptor (CACNA1S) genes as sites of disease-causing mutations. This is followed by a description of approaches to functional analysis of the effects of disease-causing mutations on protein function, focusing on studies of how mutations affect spontaneous (store overload-induced) Ca(2+)-release from the sarcoplasmic reticulum, the underlying cause of MH and CPVT.
View Article and Find Full Text PDFCardiac-specific overexpression of a constitutively active form of calcineurin A (CNA) leads directly to cardiac hypertrophy in the CNA mouse model. Because cardiac hypertrophy is a prominent characteristic of many cardiomyopathies, we deduced that delineating the proteomic profile of ventricular tissue from this model might identify novel, widely applicable therapeutic targets. Proteomic analysis was carried out by subjecting fractionated cardiac samples from CNA mice and their WT littermates to gel-free liquid chromatography linked to shotgun tandem mass spectrometry.
View Article and Find Full Text PDFRyr1(I4895T/wt) (IT/+) mice express a knockin mutation corresponding to the human I4898T EC-uncoupling mutation in the type 1 ryanodine receptor/Ca(2+) release channel (RyR1), which causes a severe form of central core disease (CCD). IT/+ mice exhibit a slowly progressive congenital myopathy, with neonatal respiratory stress, skeletal muscle weakness, impaired mobility, dorsal kyphosis, and hind limb paralysis. Lesions observed in myofibers from diseased mice undergo age-dependent transformation from minicores to cores and nemaline rods.
View Article and Find Full Text PDFMuscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca(2+). Ca(2+) is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca(2+) transient by activation of a class of Ca(2+) release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca(2+)-ATPases (SERCAs) to terminate the Ca(2+) transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD).
View Article and Find Full Text PDFBackground: Low activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) resulting from strong inhibition by phospholamban (PLN) can depress cardiac contractility and lead to dilated cardiomyopathy and heart failure. Here, we investigated whether PLN exhibits cardiotoxic effects via mechanisms other than chronic inhibition of SERCA2a by studying a PLN mutant, PLN(R9C), that triggers cardiac failure in humans and mice.
Methods And Results: Because PLN(R9C) inhibits SERCA2a mainly by preventing deactivation of wild-type PLN, SERCA2a activity could be increased stepwise by generating mice that carry a PLN(R9C) transgene and 2, 1, or 0 endogenous PLN alleles (PLN(+/+)+TgPLN(R9C), PLN(+/-)+TgPLN(R9C), and PLN(-/-)+TgPLN(R9C), respectively).
Background: The purpose of this study was to evaluate the outcome of cardiac surgery at Allamanda Hospital which is a small private hospital carrying out less than 100 operations per year.
Methods: Data on patients undergoing cardiac surgery since 2002 were prospectively entered into a database. An analysis of this data is presented and compared with national and international benchmarks for results from larger national and international cardiac surgery units.
At the end of every heartbeat, cardiac myocytes must relax to allow filling of the heart. Impaired relaxation is a significant factor in heart failure, but all pathways regulating the cardiac relaxation apparatus are not known. Haploinsufficiency of the T-box transcription factor Tbx5 in mouse and man causes congenital heart defects (CHDs) as part of Holt-Oram syndrome (HOS).
View Article and Find Full Text PDFDefective mobilization of Ca2+ by cardiomyocytes can lead to cardiac insufficiency, but the causative mechanisms leading to congestive heart failure (HF) remain unclear. In the present study we performed exhaustive global proteomics surveys of cardiac ventricle isolated from a mouse model of cardiomyopathy overexpressing a phospholamban mutant, R9C (PLN-R9C), and exhibiting impaired Ca2+ handling and death at 24 weeks and compared them with normal control littermates. The relative expression patterns of 6190 high confidence proteins were monitored by shotgun tandem mass spectrometry at 8, 16, and 24 weeks of disease progression.
View Article and Find Full Text PDF