Cycloidal mass analyzers are unique sector mass analyzers as they exhibit perfect double focusing, making them ideal for incorporating spatial aperture coding, which can increase the throughput of a mass analyzer without affecting the resolving power. However, the focusing properties of the cycloidal mass analyzer depend on the uniformity of the electric and magnetic fields. In this paper, finite element simulation and charged particle tracing were used to investigate the effect of field uniformity on imaging performance of a cycloidal mass analyzer.
View Article and Find Full Text PDFDespite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time.
View Article and Find Full Text PDF