Lithium metal anode batteries have attracted significant attention as a promising energy storage technology, offering a high theoretical specific capacity and a low electrochemical potential. Utilizing lithium metal as the anode material can substantially increase energy density compared with conventional lithium-ion batteries. However, the practical application of lithium metal anodes has encountered notable challenges, primarily due to the formation of dendritic structures during cycling.
View Article and Find Full Text PDFSi is known for cracking and delamination during electrochemical cycling of a battery due to the large volume change associated with Li insertion and extraction. However, it has been found experimentally that patterned Si island electrodes that are 200 nm thick and less than 7 μm wide can deform in a purely elastic manner. Inspired by this, we performed in situ Raman stress characterization of model poly-crystalline Si island electrodes using an electrochemical cell coupled with an immersion objective lens and designed for a short working distance.
View Article and Find Full Text PDFThree-dimensional thin-film solid-state batteries (3D TSSB) were proposed by Long et al. in 2004 as a structure-based approach to simultaneously increase energy and power densities. Here, we report experimental realization of fully conformal 3D TSSBs, demonstrating the simultaneous power-and-energy benefits of 3D structuring.
View Article and Find Full Text PDF