Publications by authors named "David M Spencer"

Allogeneic, off-the-shelf (OTS) chimeric antigen receptor (CAR) cell therapies have the potential to reduce manufacturing costs and variability while providing broader accessibility to cancer patients and those with other diseases. However, host-versus-graft reactivity can limit the durability and efficacy of OTS cell therapies requiring new strategies to evade adaptive and innate-immune responses. Human herpes virus-8 (HHV8) maintains infection, in part, by evading host T and natural killer (NK) cell attack.

View Article and Find Full Text PDF

Natural killer (NK) cells expressing chimeric antigen receptors (CARs) are a promising anticancer immunotherapy, leveraging both innate NK cell antitumor activity and target-specific cytotoxicity. Inducible MyD88/CD40 (iMC) is a potent, rimiducid-regulated protein switch that has been deployed previously as a T-cell activator to enhance proliferation and persistence of CAR-modified T cells. In this study, iMC was extended to CAR-NK cells to enhance their growth and augment cytotoxicity against tumor cells.

View Article and Find Full Text PDF

Successful adoptive chimeric antigen receptor (CAR) T-cell therapies against hematological malignancies require CAR-T expansion and durable persistence following infusion. Balancing increased CAR-T potency with safety, including severe cytokine-release syndrome (sCRS) and neurotoxicity, warrants inclusion of safety mechanisms to control in vivo CAR-T activity. Here, we describe a novel CAR-T cell platform that utilizes expression of the toll-like receptor (TLR) adaptor molecule, MyD88, and tumor-necrosis factor family member, CD40 (MC), tethered to the CAR molecule through an intentionally inefficient 2A linker system, providing a constitutive signal that drives CAR-T survival, proliferation, and antitumor activity against CD19 and CD123 hematological cancers.

View Article and Find Full Text PDF

Use of chimeric antigen receptors (CARs) as the basis of targeted adoptive T cell therapies has enabled dramatic efficacy against multiple hematopoietic malignancies, but potency against bulky and solid tumors has lagged, potentially due to insufficient CAR-T cell expansion and persistence. To improve CAR-T cell efficacy, we utilized a potent activation switch based on rimiducid-inducible MyD88 and CD40 (iMC)-signaling elements. To offset potential toxicity risks by this enhanced CAR, an orthogonally regulated, rapamycin-induced, caspase-9-based safety switch (iRC9) was developed to allow elimination of CAR-T cells.

View Article and Find Full Text PDF

Objectives: Flow cytometry (FC) aids in characterization of cellular and molecular factors involved in pathologic immune responses. Although FC has potential to facilitate early drug development in inflammatory bowel disease, interlaboratory variability limits its use in multicenter trials. Standardization of methods may address this limitation.

View Article and Find Full Text PDF

Adoptive immunotherapy with T cells expressing chimeric antigen receptors (CAR) has had limited success for solid tumors in early-phase clinical studies. We reasoned that introducing into CAR T cells an inducible costimulatory (iCO) molecule consisting of a chemical inducer of dimerization (CID)-binding domain and the MyD88 and CD40 signaling domains would improve and control CAR T-cell activation. In the presence of CID, T cells expressing HER2-CARζ and a MyD88/CD40-based iCO molecule (HER2ζ.

View Article and Find Full Text PDF

Anti-tumor efficacy of T cells engineered to express chimeric antigen receptors (CARs) is dependent on their specificity, survival, and in vivo expansion following adoptive transfer. Toll-like receptor (TLR) and CD40 signaling in T cells can improve persistence and drive proliferation of antigen-specific CD4 and CD8 T cells following pathogen challenge or in graft-versus-host disease (GvHD) settings, suggesting that these costimulatory pathways may be co-opted to improve CAR-T cell persistence and function. Here, we present a novel strategy to activate TLR and CD40 signaling in human T cells using inducible MyD88/CD40 (iMC), which can be triggered in vivo via the synthetic dimerizing ligand, rimiducid, to provide potent costimulation to CAR-modified T cells.

View Article and Find Full Text PDF

This phase I trial reports the safety and activity of BPX101, a second-generation antigen-targeted autologous antigen presenting cell (APC) vaccine in men with metastatic castration-resistant prostate cancer (mCRPC). To manufacture BPX101, APCs collected in a single leukapheresis were transduced with adenoviral vector Ad5f35 encoding inducible human (ih)-CD40, followed by incubation with protein PA001, which contains the extracellular domain of human prostate-specific membrane antigen. The ih-CD40 represents a modified chimeric version of the dendritic cell (DC) co-stimulatory molecule, CD40, which responds to a bioinert membrane-permeable activating dimerizer drug, rimiducid (AP1903), permitting temporally controlled, lymphoid-localized, DC-specific activation.

View Article and Find Full Text PDF

Although the role of T cells in autoimmunity has been explored for many years, the mechanisms leading to the initial priming of an autoimmune T cell response remain enigmatic. The 'hit and run' model suggests that self-antigens released upon cell death can provide the initial signal for a self-sustaining autoimmune response. Using a novel transgenic mouse model where we could induce the release of self-antigens via caspase-dependent apoptosis.

View Article and Find Full Text PDF

Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways.

View Article and Find Full Text PDF

Over the past 20 years, dendritic cells (DCs) have been utilized to activate immune responses capable of eliminating cancer cells. Currently, ex vivo DC priming has been the mainstay of DC cancer immunotherapies. However, cell-based treatment modalities are inherently flawed due to a lack of standardization, specialized facilities and personnel, and cost.

View Article and Find Full Text PDF

Adoptive transfer of donor-derived T lymphocytes expressing a safety switch may promote immune reconstitution in patients undergoing haploidentical hematopoietic stem cell transplant (haplo-HSCT) without the risk for uncontrolled graft versus host disease (GvHD). Thus, patients who develop GvHD after infusion of allodepleted donor-derived T cells expressing an inducible human caspase 9 (iC9) had their disease effectively controlled by a single administration of a small-molecule drug (AP1903) that dimerizes and activates the iC9 transgene. We now report the long-term follow-up of 10 patients infused with such safety switch-modified T cells.

View Article and Find Full Text PDF

The reactive stroma surrounding tumor lesions performs critical roles ranging from supporting tumor cell proliferation to inducing tumorigenesis and metastasis. Therefore, it is critical to understand the cellular components and signaling control mechanisms that underlie the etiology of reactive stroma. Previous studies have individually implicated fibroblast growth factor receptor 1 (FGFR1) and canonical WNT/β-catenin signaling in prostate cancer progression and the initiation and maintenance of a reactive stroma; however, both pathways are frequently found to be coactivated in cancer tissue.

View Article and Find Full Text PDF

The role of Notch signaling in the maintenance of adult murine prostate epithelial homeostasis remains unclear. We found that Notch ligands are mainly expressed within the basal cell lineage, while active Notch signaling is detected in both the prostate basal and luminal cell lineages. Disrupting the canonical Notch effector Rbp-j impairs the differentiation of prostate basal stem cells and increases their proliferation in vitro and in vivo, but does not affect luminal cell biology.

View Article and Find Full Text PDF

To better control the "licensing" of pro-Th1 dendritic cells (DCs), Spencer and colleagues have developed a synthetic ligand-inducible chimeric receptor, iMyD88/CD40 (iMC), incorporating synergistic Toll-like receptor (TLR) and costimulatory signaling elements, permitting DC regulation in vivo within the context of an immunological synapse. This novel technology results in potent anti-cancer activity.

View Article and Find Full Text PDF

Recent modest successes in ex vivo dendritic cell (DC) immunotherapy have motivated continued innovation in the area of DC manipulation and activation. Although ex vivo vaccine approaches continue to be proving grounds for new DC manipulation techniques, the intrinsic limits of ex vivo therapy, including high cost, minimal standardization, cumbersome delivery, and poor accessibility, incentivizes the development of vaccines compatible with in vivo DC targeting. We describe here a method to co-deliver both tumor-specific antigen (TSA) and an iMyD88/CD40 adjuvant (iMC), to DCs that combines toll-like receptor (TLR) and CD40 signaling.

View Article and Find Full Text PDF

Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5.

View Article and Find Full Text PDF

Background: Cellular therapies could play a role in cancer treatment and regenerative medicine if it were possible to quickly eliminate the infused cells in case of adverse events. We devised an inducible T-cell safety switch that is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iCasp9) becomes activated and leads to the rapid death of cells expressing this construct.

View Article and Find Full Text PDF

RNA aptamers represent an emerging class of pharmaceuticals with great potential for targeted cancer diagnostics and therapy. Several RNA aptamers that bind cancer cell-surface antigens with high affinity and specificity have been described. However, their clinical potential has yet to be realized.

View Article and Find Full Text PDF

The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl--known for its roles in regulating lymphocyte signalling--as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours.

View Article and Find Full Text PDF