We have developed a novel system to facilitate the rapid and easy cloning of multiple genes (>10) in under a week. Using this system we have been able to successfully clone, overexpress, and purify a number of large multimeric proteins from insect cells, including the chromatin remodeling complexes SWR1 and INO80. Using Förster resonance energy transfer (FRET)-based assays we have demonstrated that our overexpressed enzymes have activities comparable to those purified from sources where the proteins are expressed under their endogenous promoters.
View Article and Find Full Text PDFWe have prepared recombinant fourteen subunit yeast SWR1 complex from insect cells using a modified MultiBac system. The 1.07 MDa recombinant protein complex has histone-exchange activity.
View Article and Find Full Text PDFAims: Adenosine triphosphate (ATP) synthase uses chemiosmotic energy across the inner mitochondrial membrane to convert adenosine diphosphate and orthophosphate into ATP, whereas genetic deletion of Sirt3 decreases mitochondrial ATP levels. Here, we investigate the mechanistic connection between SIRT3 and energy homeostasis.
Results: By using both in vitro and in vivo experiments, we demonstrate that ATP synthase F1 proteins alpha, beta, gamma, and Oligomycin sensitivity-conferring protein (OSCP) contain SIRT3-specific reversible acetyl-lysines that are evolutionarily conserved and bind to SIRT3.
The molecular description of the mechanism of F(1)-ATPase is based mainly on high-resolution structures of the enzyme from mitochondria, coupled with direct observations of rotation in bacterial enzymes. During hydrolysis of ATP, the rotor turns counterclockwise (as viewed from the membrane domain of the intact enzyme) in 120° steps. Because the rotor is asymmetric, at any moment the three catalytic sites are at different points in the catalytic cycle.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2009
The structure of the complex between bovine mitochondrial F(1)-ATPase and a stator subcomplex has been determined at a resolution of 3.2 A. The resolved region of the stator contains residues 122-207 of subunit b; residues 5-25 and 35-57 of F(6); 3 segments of subunit d from residues 30-40, 65-74, and 85-91; and residues 1-146 and 169-189 of the oligomycin sensitivity conferral protein (OSCP).
View Article and Find Full Text PDFBackground: Coronary angiography and angioplasty have to date been performed using digital angiography and fluoroscopic systems which incorporate an image intensifier (II). More recently flat-panel (FP) detectors have been introduced which are thought to improve spatial resolution. However, there is limited data on the effect of flat-panel detection on radiation exposure.
View Article and Find Full Text PDF