The placenta is a dynamic organ that must perform a remarkable variety of functions during its relatively short existence in order to support a developing fetus. These functions include nutrient delivery, gas exchange, waste removal, hormone production, and immune barrier protection. Proper placenta development and function are critical for healthy pregnancy outcomes, but the underlying genomic regulatory events that control this process remain largely unknown.
View Article and Find Full Text PDFThe placenta plays a critical role in fetal development. It serves as a multi-functional organ that protects and nurtures the fetus during pregnancy. However, despite its importance, the intricacies of placental structure and function in normal and diseased states have remained largely unexplored.
View Article and Find Full Text PDFObjectives: To evaluate longitudinal placental perfusion using pseudo-continuous arterial spin-labeled (pCASL) MRI in normal pregnancies and in pregnancies affected by chronic hypertension (cHTN), who are at the greatest risk for placental-mediated disease conditions.
Methods: Eighteen normal and 23 pregnant subjects with cHTN requiring antihypertensive therapy were scanned at 3 T using free-breathing pCASL-MRI at 16-20 and 24-28 weeks of gestational age.
Results: Mean placental perfusion was 103.
To investigate if differences in imprinting at tropho-microRNA (miRNA) genomic clusters can distinguish between pre-gestational trophoblastic neoplasia cases (pre-GTN) and benign complete hydatidiform mole (CHM) cases at the time of initial uterine evacuation. miRNA sequencing was performed on frozen tissue from 39 CHM cases including 9 GTN cases. DIO3, DLK1, RTL1, and MEG 3 mRNA levels were assessed by qRT-PCR.
View Article and Find Full Text PDFPaediatr Int Child Health
November 2013
This article summarises child abuse as a global problem of increasing breadth and complexity. It reviews the development of procedures for prosecuting alleged abusers and treating complainants appropriately in the course of investigations, medical examinations and court hearings. It contrasts the diverse environments of the UK, Tajikistan and Tanzania.
View Article and Find Full Text PDFUnlabelled: Silymarin, an extract from milk thistle (Silybum marianum), and its purified flavonolignans have been recently shown to inhibit hepatitis C virus (HCV) infection, both in vitro and in vivo. In the current study, we further characterized silymarin's antiviral actions. Silymarin had antiviral effects against hepatitis C virus cell culture (HCVcc) infection that included inhibition of virus entry, RNA and protein expression, and infectious virus production.
View Article and Find Full Text PDFHepatitis C virus (HCV) infection is a major cause of liver disease. HCV associates with host apolipoproteins and enters hepatocytes through complex processes involving some combination of CD81, claudin-1, occludin, and scavenger receptor BI. Here we show that infectious HCV resembles very low density lipoprotein (VLDL) and that entry involves co-receptor function of the low-density lipoprotein receptor (LDL-R).
View Article and Find Full Text PDFA wide variety of stimuli induce the inflammasome, but little is known about its role in immune protection against viruses. In this issue of Immunity, Allen et al. (2009) and Thomas et al.
View Article and Find Full Text PDFSignalling pathways leading to type I interferon production are the first line of defence employed by the host to combat viruses, and represent a barrier that an invading virus must overcome in order to establish infection. In this review we highlight the ability of two members of the Flaviviridae, a globally distributed family of RNA viruses that represent a significant public health concern, to disrupt and evade these defences. Hepatitis C virus is a hepatotropic virus, infecting greater than 170 million people worldwide, while West Nile virus is a neurotropic virus that causes encephalitis in humans and horses.
View Article and Find Full Text PDFInnate immune defences are essential for the control of virus infection and are triggered through host recognition of viral macromolecular motifs known as pathogen-associated molecular patterns (PAMPs). Hepatitis C virus (HCV) is an RNA virus that replicates in the liver, and infects 200 million people worldwide. Infection is regulated by hepatic immune defences triggered by the cellular RIG-I helicase.
View Article and Find Full Text PDFUnlabelled: Interferon regulatory factor-3 (IRF-3) activation directs alpha/beta interferon production and interferon-stimulated gene (ISG) expression, which limits virus infection. Here, we examined the distribution of hepatitis C virus (HCV) nonstructural 3 protein, the status of IRF-3 activation, and expression of IRF-3 target genes and ISGs during asynchronous HCV infection in vitro and in liver biopsies from patients with chronic HCV infection, using confocal microscopy and functional genomics approaches. In general, asynchronous infection with HCV stimulated a low-frequency and transient IRF-3 activation within responsive cells in vitro that was associated with cell-to-cell virus spread.
View Article and Find Full Text PDFHepatitis C virus (HCV) and triglyceride-rich very low-density lipoproteins (VLDLs) both are secreted uniquely by hepatocytes and circulate in blood in a complex. Here, we isolated from human hepatoma cells the membrane vesicles in which HCV replicates. These vesicles, which contain the HCV replication complex, are highly enriched in proteins required for VLDL assembly, including apolipoprotein B (apoB), apoE, and microsomal triglyceride transfer protein.
View Article and Find Full Text PDFChronic hepatitis C virus (HCV) infection is a major global public health problem. HCV infection is supported by viral strategies to evade the innate antiviral response wherein the viral NS3.4A protease complex targets and cleaves the interferon promoter stimulator-1 (IPS-1) adaptor protein to ablate signaling of interferon alpha/beta immune defenses.
View Article and Find Full Text PDFViral signaling through retinoic acid-inducible gene-I (RIG-I) and its adaptor protein, IFN promoter-stimulator 1 (IPS-1), activates IFN regulatory factor-3 (IRF-3) and the host IFN-alpha/beta response that limits virus infection. The hepatitis C virus (HCV) NS3/4A protease cleaves IPS-1 to block RIG-I signaling, but how this regulation controls the host response to HCV is not known. Moreover, endogenous IPS-1 cleavage has not been demonstrated in the context of HCV infection in vitro or in vivo.
View Article and Find Full Text PDF