Publications by authors named "David M MacLean"

Inositol 1,4,5-trisphosphate receptors (IPRs) are ubiquitous intracellular Ca2+ release channels. Their activation, subcellular localization, abundance, and regulation play major roles in defining the spatiotemporal characteristics of intracellular Ca2+ signals, which are in turn fundamental to the appropriate activation of effectors that control a myriad of cellular events. Over the past decade, ∼100 mutations in s associated with human diseases have been documented.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by extracellular acidification. Amongst many pathological roles, ASICs are an important mediator of ischemic cell death and hence an attractive drug target for stroke treatment as well as other conditions. A peptide called Hi1a, isolated from Australian funnel web spider venom, inhibits ASIC1a and attenuates cell death in a stroke model up to 8 h after stroke induction.

View Article and Find Full Text PDF

Desensitization is a prominent feature of nearly all ligand-gated ion channels. Acid-sensing ion channels (ASICs) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th β sheets in the extracellular domain.

View Article and Find Full Text PDF

Desensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11 and 12 beta sheets in the extracellular domain.

View Article and Find Full Text PDF
Article Synopsis
  • GRID1 and GRID2 are genes that encode proteins essential for the organization and development of synapses in the central nervous system, with variations linked to neurodevelopmental issues.
  • The study analyzed human variants from various sources, finding many variants in intolerant domains that could disrupt normal protein function, particularly in the amino terminal and M3 transmembrane domains.
  • Experiments showed that certain variants lead to dysfunction in receptor interaction and activity, with pentamidine effectively inhibiting hyperactive GluD2 variants, highlighting the importance of these receptors in both healthy function and disease contexts.
View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are important players in detecting extracellular acidification throughout the brain and body. ASICs have large extracellular domains containing two regions replete with acidic residues: the acidic pocket, and the palm domain. In the resting state, the acidic pocket is in an expanded conformation but collapses in low pH conditions as the acidic side chains are neutralized.

View Article and Find Full Text PDF

Inhibitor-2 (I-2) is a prototypic inhibitor of protein phosphatase-1 (PP1), a major serine-threonine phosphatase that regulates synaptic plasticity and learning and memory. Although I-2 is a potent inhibitor of PP1 , our previous work has elucidated that, , I-2 may act as a positive regulator of PP1. Here we show that I-2 and PP1, but not PP1α, positively regulate synaptic transmission in hippocampal neurons.

View Article and Find Full Text PDF

Structures of the trimeric acid-sensing ion channel have been solved in the resting, toxin-bound open and desensitized states. Within the extracellular domain, there is little difference between the toxin-bound open state and the desensitized state. The main exception is that a loop connecting the 11th and 12th β-strand, just two amino acid residues long, undergoes a significant and functionally critical re-orientation or flipping between the open and desensitized conformations.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by decreases in extracellular pH. The intracellular N and C terminal tails of ASIC1 influence channel gating, trafficking, and signaling in ischemic cell death. Despite several X-ray and cryo-EM structures of the extracellular and transmembrane segments of ASIC1, these important intracellular tails remain unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • Desensitization is a common characteristic of ligand-gated ion channels, but the degree of desensitization can significantly differ among channel types, with recent discoveries regarding acid-sensing ion channels (ASICs).
  • Mutations such as Q276G in human ASIC1a and its equivalent Q277G in chicken ASIC1 were initially thought to severely reduce desensitization, but research shows these mutations only have a modest effect on desensitization levels.
  • The study indicates notable differences in desensitization mechanisms between human and chicken ASICs, emphasizing the importance of thorough examination when using these mutations in future experiments.
View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are a class of trimeric cation-selective ion channels activated by changes in pH within the physiological range. They are widely expressed in the central and peripheral nervous systems where they participate in a range of physiological and pathophysiological situations such as learning and memory, pain sensation, fear and anxiety, substance abuse and cell death. ASICs are localized to cell bodies and dendrites, including the postsynaptic density, and within the last 5 years several examples of proton-evoked ASIC excitatory postsynaptic currents have emerged.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the β11-12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process.

View Article and Find Full Text PDF

Förster Resonance Energy Transfer (FRET) has become an immensely powerful tool to profile intra- and inter-molecular interactions. Through fusion of genetically encoded fluorescent proteins (FPs) researchers have been able to detect protein oligomerization, receptor activation, and protein translocation among other biophysical phenomena. Recently, two bright monomeric red fluorescent proteins, mRuby3 and mScarlet-I, have been developed.

View Article and Find Full Text PDF
Article Synopsis
  • - Allostery in multidomain proteins can involve both activation and repression, allowing precise regulation of protein functions.
  • - The study utilizes single molecule fluorescence resonance energy transfer (smFRET) and molecular dynamics to analyze how glutamate and glycine interact with the NMDA receptor, revealing that binding one agonist impacts the site's conformational flexibility at the other.
  • - Research findings highlight that mutations and cross-linking at the dimer-dimer interface of the agonist-binding domain play a crucial role in mediating negative cooperativity, with the transmembrane segments becoming more loosely packed only when both agonists are bound, ultimately facilitating receptor activation.
View Article and Find Full Text PDF

Fast excitatory synaptic transmission in the mammalian central nervous system is mediated by glutamate-activated α-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA) receptors. In neurons, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs). Assembly with TARP γ8 alters the biophysical properties of the receptor, producing resensitization currents in the continued presence of glutamate.

View Article and Find Full Text PDF

The ionotropic glutamate receptors mediate excitatory neurotransmission in the mammalian central nervous system. These receptors provide a range of temporally diverse signals which stem from subunit composition and also from the inherent ability of each member to occupy multiple functional states, the distribution of which can be altered by small molecule modulators and binding partners. Hence it becomes essential to characterize the conformational landscape of the receptors under this variety of different conditions.

View Article and Find Full Text PDF

α2δ-1, commonly known as a voltage-activated Ca channel subunit, is a binding site of gabapentinoids used to treat neuropathic pain and epilepsy. However, it is unclear how α2δ-1 contributes to neuropathic pain and gabapentinoid actions. Here, we show that Cacna2d1 overexpression potentiates presynaptic and postsynaptic NMDAR activity of spinal dorsal horn neurons to cause pain hypersensitivity.

View Article and Find Full Text PDF

N-Methyl-D-aspartate (NMDA) receptors are the main calcium-permeable excitatory receptors in the mammalian central nervous system. The NMDA receptor gating is complex, exhibiting multiple closed, open, and desensitized states; however, central questions regarding the conformations and energetics of the transmembrane domains as they relate to the gating states are still unanswered. Here, using single-molecule Förster resonance energy transfer (smFRET), we map the energy landscape of the first transmembrane segment of the Rattus norvegicus NMDA receptor under resting and various liganded conditions.

View Article and Find Full Text PDF

Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs) associated with transmembrane AMPAR regulatory proteins (TARPs). At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8.

View Article and Find Full Text PDF

Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated.

View Article and Find Full Text PDF

Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin.

View Article and Find Full Text PDF

Key Points: Acid-sensing ion channels (ASICs) act as neurotransmitter receptors by responding to synaptic cleft acidification. We investigated how ASIC1a homomers and ASIC1a/2a heteromers respond to brief stimuli, jumping from pH 8.0 to 5.

View Article and Find Full Text PDF