Publications by authors named "David M Lapola"

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system.

View Article and Find Full Text PDF

The response of plants to increasing atmospheric CO depends on the ecological context where the plants are found. Several experiments with elevated CO (eCO) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO is important for foreseeing how the forest will function in the future.

View Article and Find Full Text PDF

Climate change mitigation and biodiversity conservation are two major environmental actions that need to be effectively performed this century, alongside ensuring food supply for a growing global human population. These three issues are highly interlinked through land management systems. Thus, major global food production regions located in biodiversity hotpots and with potential for carbon sequestration face trade-offs between these valuable land-based ecosystem services.

View Article and Find Full Text PDF
Article Synopsis
  • About 2.5 million square kilometers of the Amazon forest are damaged by things like fires and logging, which is a lot of the remaining forest there.
  • This damage releases a huge amount of carbon into the air, just like deforestation does.
  • It's important to create plans that not only stop deforestation but also fix the problems causing the forest to degrade so that the forest can be protected better.
View Article and Find Full Text PDF

Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies.

View Article and Find Full Text PDF

A common assumption in tropical ecology is that root systems respond rapidly to climatic cues but that most of that response is limited to the uppermost layer of the soil, with relatively limited changes in deeper layers. However, this assumption has not been tested directly, preventing models from accurately predicting the response of tropical forests to environmental change.We measured seasonal dynamics of fine roots in an upper-slope plateau in Central Amazonia mature forest using minirhizotrons to 90 cm depth, which were calibrated with fine roots extracted from soil cores.

View Article and Find Full Text PDF

Brazil hosts the largest expanse of tropical ecosystems within protected areas (PAs), which shelter biodiversity and support traditional human populations. We assessed the vulnerability to climate change of 993 terrestrial and coastal-marine Brazilian PAs by combining indicators of climatic-change hazard with indicators of PA resilience (size, native vegetation cover, and probability of climate-driven vegetation transition). This combination of indicators allows the identification of broad climate-change adaptation pathways.

View Article and Find Full Text PDF

Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at all in light of such uncertainties. No action/later action would result in major social impacts that may influence migration to large Amazonian cities through a causal chain of climate change and forest degradation leading to lower river-water levels that affect transportation, food security, and health.

View Article and Find Full Text PDF

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space.

View Article and Find Full Text PDF

The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests).

View Article and Find Full Text PDF

We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented.

View Article and Find Full Text PDF

The aggressive behavior of ants that protect plants from herbivores in exchange for rewards such as shelter or food is thought to be an important form of biotic defense against herbivory, particularly in tropical systems. To date, however, no one has compared the defensive responses of different ant taxa associated with the same plant species, and attempted to relate these differences to longer-term efficacy of ant defense. We used experimental cues associated with herbivory--physical damage and extracts of chemical volatiles from leaf tissue--to compare the aggressive responses of two ant species obligately associated with the Amazonian myrmecophyte Tococa bullifera (Melastomataceae).

View Article and Find Full Text PDF