Aerosp Med Hum Perform
September 2023
The modern aircraft cockpit has evolved into a complex system of systems. Numerous performance evaluation metrics and techniques exist that can measure the effectiveness of cockpit components in terms of how they influence the human operator's ability to perform tasks relevant to mission success. As no prior review of these metrics has been found in the literature, this effort attempts to do so, albeit without applying the metrics to a novel cockpit evaluation.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2022
Alternative reality (XR) technologies, including physical, augmented, hybrid, and virtual reality, offer ways for engineered spaces to be evaluated. Traditionally, practitioners (such as those designing spacecraft habitats) have relied on physical mockups to perform such design evaluations, but digital XR technologies present several streamlining advantages over their physical counterparts. These digital environments vary in their level of virtuality, and consequently have different effects on human perception and performance, with respect to a completely physical mockup environment.
View Article and Find Full Text PDFThe responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood.
View Article and Find Full Text PDFHuman space flight is a complex undertaking that entails numerous technological and biomedical challenges. Engineers and scientists endeavor, to the extent possible, to identify and mitigate the ensuing risks. The potential for an outbreak of an infectious disease in a spacecraft presents one such concern, which is compounded by several components unique to an extraterrestrial environment.
View Article and Find Full Text PDFBioServe Space Technologies, a NASA Research Partnership Center (RPC), has developed and operated various middeck payloads launched on 23 shuttle missions since 1991 in support of commercial space biotechnology projects. Modular cell culture systems are contained within the Commercial Generic Bioprocessing Apparatus (CGBA) suite of flight-qualified hardware, compatible with Space Shuttle, SPACEHAB, Spacelab and International Space Station (ISS) EXPRESS Rack interfaces. As part of the CGBA family, the Isothermal Containment Module (ICM) incubator provides thermal control, data acquisition and experiment manipulation capabilities, including accelerometer launch detection for automated activation and thermal profiling for culture incubation and sample preservation.
View Article and Find Full Text PDFConducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell.
View Article and Find Full Text PDFAviat Space Environ Med
April 2005
Introduction: Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for space motion sickness (SMS) and spatial disorientation (SD). It is hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during spaceflight, will reduce the incidence and/or severity of SMS and SD.
Methods: Subjects were assigned to either a variable training (VT) or nonvariable training (NVT) condition to perform a simple navigation and switch activation task in a virtual space station.
Microgravity Sci Technol
March 2005
The number one priority for any manned space mission is the health and safety of its crew. The study of the short and long term physiological effects on humans is paramount to ensuring crew health and mission success. One of the challenges associated in studying the physiological effects of space flight on humans, such as loss of bone and muscle mass, has been that of readily attaining the data needed to characterize the changes.
View Article and Find Full Text PDFWe investigate the utility of digital holographic interferometry for analyzing gravity-dependent mass transport phenomena as applicable to materials and life science research topics. Digital holography is useful for measurement of parameters that introduce phase changes in light traversing the material of interest, such as temperature or concentration variations in an aqueous environment. We have constructed, tested, and verified a compact, portable digital holographic monitor (DHM) suitable for characterization of transparent samples.
View Article and Find Full Text PDF