Publications by authors named "David M J Dykstra"

Damping mechanical resonances is a formidable challenge in an increasing number of applications. Many passive damping methods rely on using low stiffness, complex mechanical structures or electrical systems, which render them unfeasible in many of these applications. Herein, a new method for passive vibration damping, by allowing buckling of the primary load path in mechanical metamaterials and lattice structures, is introduced, which sets an upper limit for vibration transmission: the transmitted acceleration saturates at a maximum value in both tension and compression, no matter what the input acceleration is.

View Article and Find Full Text PDF

Mechanical metamaterials are artificial composites that exhibit a wide range of advanced functionalities such as negative Poisson's ratio, shape shifting, topological protection, multistability, extreme strength-to-density ratio, and enhanced energy dissipation. In particular, flexible metamaterials often harness zero-energy deformation modes. To date, such flexible metamaterials have a single property, for example, a single shape change, or are pluripotent, that is, they can have many different responses, but typically require complex actuation protocols.

View Article and Find Full Text PDF

A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise under compressive forces, it has previously been shown analytically that a tensile instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain conditions and observed for the first time this elastic tensile instability.

View Article and Find Full Text PDF