Publications by authors named "David M Hollenstein"

Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid-liquid phase separation of the autophagy-related gene 1 (Atg1) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor.

View Article and Find Full Text PDF

Mitophagy is a specific type of autophagy responsible for the selective elimination of dysfunctional or superfluous mitochondria, ensuring the maintenance of mitochondrial quality control. The initiation of mitophagy is coordinated by the ULK1 kinase complex, which engages mitophagy receptors via its FIP200 subunit. Whether FIP200 performs additional functions in the subsequent later phases of mitophagy beyond this initial step and how its regulation occurs, remains unclear.

View Article and Find Full Text PDF

Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood.

View Article and Find Full Text PDF

Post-translational modifications of histones are important regulators of the DNA damage response (DDR). By using affinity purification mass spectrometry (AP-MS) we discovered that genetic suppressor element 1 (GSE1) forms a complex with the HDAC1/CoREST deacetylase/demethylase co-repressor complex. In-depth phosphorylome analysis revealed that loss of GSE1 results in impaired DDR, ATR signalling and γH2AX formation upon DNA damage induction.

View Article and Find Full Text PDF

We present an effective, fast, and user-friendly method to reduce codigestion of bead-bound ligands, such as antibodies or streptavidin, in affinity purification-mass spectrometry experiments. A short preincubation of beads with Sulfo-NHS-Acetate leads to chemical acetylation of lysine residues, making ligands insusceptible to Lys-C-mediated proteolysis. In contrast to similar approaches, our procedure offers the advantage of exclusively using nontoxic chemicals and employing mild chemical reaction conditions.

View Article and Find Full Text PDF

Autophagosomes form at the endoplasmic reticulum in mammals, and between the vacuole and the endoplasmic reticulum in yeast. However, the roles of these sites and the mechanisms regulating autophagosome formation are incompletely understood. Vac8 is required for autophagy and recruits the Atg1 kinase complex to the vacuole.

View Article and Find Full Text PDF
Article Synopsis
  • Environmental cues can change cellular behavior traditionally through kinases (activators) and phosphatases (antagonists), but this study highlights a phosphatase-driven mechanism that induces phosphorylation instead.
  • Using Saccharomyces cerevisiae, the research shows that the inhibition of a specific phosphatase (PP2A-Cdc55) by Endosulfine triggers a phosphorylation response without the activation of kinases.
  • This phosphatase-centric signaling approach challenges the conventional view, suggesting that phosphatases can act as key effectors in cellular responses, influencing various processes vital for surviving stress.
View Article and Find Full Text PDF

Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which deliver bulk cytoplasmic material to the lytic compartment of the cell for degradation. Autophagosome formation is initiated by assembly and recruitment of the core autophagy machinery to distinct cellular sites, referred to as phagophore assembly sites (PAS) in yeast or autophagosome formation sites in other organisms. A large number of autophagy proteins involved in the formation of autophagosomes has been identified; however, how the individual components of the PAS are assembled and how they function to generate autophagosomes remains a fundamental question.

View Article and Find Full Text PDF

Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole.

View Article and Find Full Text PDF

Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome.

View Article and Find Full Text PDF

In the version of this article initially published online, the authors used incorrectly defined restraints for specifying the distance between residues when using the HADDOCK portal. Following the publication of a Correspondence by the developers of the HADDOCK portal (Nat. Protoc.

View Article and Find Full Text PDF

We report an unanticipated system of joint regulation by cyclin-dependent kinase (CDK) and mitogen-activated protein kinase (MAPK), involving collaborative multi-site phosphorylation of a single substrate. In budding yeast, the protein Ste5 controls signaling through a G1 arrest pathway. Upon cell-cycle entry, CDK inhibits Ste5 via multiple phosphorylation sites, disrupting its membrane association.

View Article and Find Full Text PDF

This protocol describes a workflow for creating structural models of proteins or protein complexes using distance restraints derived from cross-linking mass spectrometry experiments. The distance restraints are used (i) to adjust preliminary models that are calculated on the basis of a homologous template and primary sequence, and (ii) to select the model that is in best agreement with the experimental data. In the case of protein complexes, the cross-linking data are further used to dock the subunits to one another to generate models of the interacting proteins.

View Article and Find Full Text PDF

The budding yeast reacts to increased external osmolarity by modifying many cellular processes. Adaptive signaling relies primarily on the high-osmolarity glycerol (HOG) pathway, which is closely related to the mammalian p38 mitogen-activated protein kinase (MAPK) pathway in core architecture. To identify target proteins of the MAPK Hog1, we designed a mass spectrometry-based high-throughput experiment to measure the impact of Hog1 activation or inhibition on the phosphoproteome.

View Article and Find Full Text PDF

The HOP2-MND1 heterodimer is essential for meiotic homologous recombination in plants and other eukaryotes and promotes the repair of DNA double-strand breaks. We investigated the conformational flexibility of HOP2-MND1, important for understanding the mechanistic details of the heterodimer, with chemical cross-linking in combination with mass spectrometry (XL-MS). The final XL-MS workflow encompassed the use of complementary cross-linkers, quenching, digestion, size exclusion enrichment, and HCD-based LC-MS/MS detection prior to data evaluation.

View Article and Find Full Text PDF