The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M.
View Article and Find Full Text PDFAlthough the water oxidation cycle involves the critical step of O-O bond formation, the transition metal oxide radical thought to be the catalytic intermediate for this step has eluded direct observation. The radical represents the transformation of charge into a nascent catalytic intermediate, which lacks a newly formed bond and is therefore inherently difficult to detect. Here, using theoretical calculations and ultrafast in situ infrared spectroscopy of photocatalysis at an n-SrTiO3/aqueous interface, we reveal a subsurface vibration of the oxygen directly below, and uniquely generated by, the oxyl radical (Ti-O(•)).
View Article and Find Full Text PDFInterfacial hole transfer between n-SrTiO3 and OH(-) was investigated by surface sensitive transient optical spectroscopy of an in situ photoelectrochemical cell during water oxidation. The kinetics reveal a single rate constant with an exponential dependence on the surface hole potential, spanning time scales from 3 ns to 8 ps over a ≈1 V increase. A voltage- and laser illumination-induced process moves the valence band edge at the n-type semiconductor/water interface to continuously change the surface hole potential.
View Article and Find Full Text PDF