The ability to utilize biomass as a feedstock for liquid fuel and value-added chemicals is dependent on the efficient and economic utilization of lignin, hemicellulose, and cellulose. In current bioreactors, cellulases are used to convert crystalline and amorphous cellulose to smaller oligomers and eventually glucose by means of cellulase enzymes. A critical component of the enzyme catalyzed hydrolysis reaction is the degree to which the enzyme can facilitate substrate ring deformation from the chair to a more catalytically active conformation (e.
View Article and Find Full Text PDFThe size and character of the peripheral loops enclosing the active site for cellulase enzymes is believed to play a major role in dictating many critical enzymatic properties. For many cellulases it is observed that fully enclosed active sites forming a tunnel are more conducive to cellobiohydrolase activity and the ability to processively move along the substrate. Conversely, a more open active site groove is indicative of endoglucanase activity.
View Article and Find Full Text PDFSolution pH and the pKa values of ionizable residues are critical factors known to influence enzyme catalysis, structural stability, and dynamical fluctuations. Presented here is an exhaustive computational study utilizing long time constant pH molecular dynamics, pH replica exchange simulations, and kinetic modeling to evaluate pH-dependent conformations, charge dynamics, residue pKa values, and the catalytic activity-pH profile for cellobiohydrolase Cel7B from Melanocarpus albomyces . The predicted pKa values support the role of Glu212 as the catalytic nucleophile and Glu217 as the acid-base residue.
View Article and Find Full Text PDFα-Conotoxin MII (α-CTxMII) is a potent and selective peptide antagonist of neuronal nicotinic acetylcholine receptors (nAChR's). Studies have shown that His9 and His12 are significant determinants of toxin binding affinity for nAChR, while Glu11 may dictate differential toxin affinity between nAChR isoforms. The protonation state of these histidine residues and therefore the charge on the α-CTx may contribute to the observed differences in binding affinity and selectivity.
View Article and Find Full Text PDFThe synthesis, structure, and spectroscopic signatures of a series of four-coordinate iron(II) complexes of β-ketoiminates and their zinc(II) analogues are presented. An unusual five-coordinate iron(II) triflate with three oxygen bound protonated β-ketoimines is also synthesized and structurally characterized. Single-crystal X-ray crystallographic analysis reveals that the deprotonated bis(chelate)metal complexes are four-coordinate with various degrees of distortion depending on the degree of steric bulk and the electronics of the metal center.
View Article and Find Full Text PDF