Publications by authors named "David M Floyd"

Phenotypic whole-cell screening in erythrocytic cocultures of Plasmodium falciparum identified a series of dihydroisoquinolones that possessed potent antimalarial activity against multiple resistant strains of P. falciparum in vitro and show no cytotoxicity to mammalian cells. Systematic structure-activity studies revealed relationships between potency and modifications at N-2, C-3, and C-4.

View Article and Find Full Text PDF

Homophthalic anhydride (HPA) dimerizes under the influence of base to provide, sequentially, the (3-4')-C-acyl dimer, a pair of chiral diastereomeric bis(lactones), 3-(2-carboxybenzyl)isocoumarin-4-carboxylic acid, and finally, 3-(2-carboxybenzyl)isocoumarin. The structures of the bis(lactones) were misassigned in 1970 based on the (presumed) thermal decarboxylative elimination reaction of the lower melting one. The preferred pathway should be , however, and crystallographic analysis of one of the bis(lactones) reverses the earlier assignment.

View Article and Find Full Text PDF

Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4.

View Article and Find Full Text PDF

The addition of N-methylimidazole (NMI) to the reaction of homophthalic anhydride with imines such as pyridine-3-carboxaldehyde-N-trifluoroethylimine (9) reduces the amount of elimination byproduct and improves the yield of the formal cycloadduct, tetrahydroisoquinolonic carboxylate 10. Carboxanilides of such compounds are of interest as potential antimalarial agents. A mechanism that rationalizes the role of NMI is proposed, and a gram-scale procedure for the synthesis and resolution of 10 is also described.

View Article and Find Full Text PDF

Malaria is one of the leading causes of severe infectious disease worldwide; yet, our ability to maintain effective therapy to combat the illness is continually challenged by the emergence of drug resistance. We previously reported identification of a new class of triazolopyrimidine-based Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors with antimalarial activity, leading to the discovery of a new lead series and novel target for drug development. Active compounds from the series contained a triazolopyrimidine ring attached to an aromatic group through a bridging nitrogen atom.

View Article and Find Full Text PDF