Publications by authors named "David Lopez-Tejedor"

Tyrosinases from a commercial protein extract and directly isolated from white mushrooms were purified in order to obtaining the well-known tyrosinase from () of 45 kDa and a newly discovered 50 kDa tyrosinase isoform (), and tested showing high antiviral activity against the hepatitis C virus for the first time. Cell toxicity and antiviral activity of tyrosinases were determined in cultured Huh 5-2 liver tumor cells transfected with a replicon system (a plasmid that includes all non-structural hepatitis C virus proteins and replicates autonomously). was able to inhibit the replication of the hepatitis C virus without inducing toxicity in liver cells.

View Article and Find Full Text PDF

A new synthesis method for tailor-made iron-hybrid nanoparticles has been carried out for the first time using enzymes, which directly induce the formation of inorganic iron species. The role of the protein was critical for the formation and morphology of the iron nanostructures and, depending on the enzyme, by simple mixing with ammonium iron(ii) sulfate at room temperature and under air, it was possible to obtain, for the first time, well stabilized superparamagnetic iron and iron oxide nanorods, nanosheets and nanorings or even completely amorphous non-magnetic iron structures in the protein network. These iron nanostructure-enzyme hybrids showed excellent results as heterogeneous catalysts in organic chemistry (chemoselective hydrogenation and C-C bonding formation) and environmental remediation processes.

View Article and Find Full Text PDF

A novel heterogeneous enzyme-palladium (Pd) (0) nanoparticles (PdNPs) bionanohybrid has been synthesized by an efficient, green, and straightforward methodology. A designed lipase (GTL) variant genetically and then chemically modified by the introduction of a tailor-made cysteine-containing complementary peptide- was used as the stabilizing and reducing agent for the in situ formation of ultra-small PdNPs nanoparticles embedded on the protein structure. This bionanohybrid was an excellent catalyst in the synthesis of -ethyl cinnamate by Heck reaction at 65 °C.

View Article and Find Full Text PDF

Full degradation of -aminophenol in aqueous solution at room temperature by using a heterogeneous nanostructured iron hybrid catalyst in the presence of hydrogen peroxide is described. A nanostructured iron catalyst was prepared by in situ formation of iron carbonate nanorods on the protein network using an aqueous solution of an enzyme, lipase B from (CAL-B). A second kind of iron nanostructured catalyst was obtained by the sunsequent treatment of the hybrid with an aqueous liquid extract of x .

View Article and Find Full Text PDF

Herein we report a straightforward synthesis of an ultrathin protein-iron(ii) carbonate nanorods (FeCO3-NRs) heterogeneous bionanohybrid at room temperature and in aqueous media. The enzyme induced the in situ formation of well-dispersed FeCO3 NRs on a protein network. The addition of NaBH4 as a reducing agent allowed us to obtain nanorods (5 × 40 nm) with superparamagnetic properties.

View Article and Find Full Text PDF

A highly-active tyrosinase (H subunit) isoform has been purified from a commercial crude extract of Agaricus bisporus by a specific, two step-hydrophobic chromatography cascade process based on the differential adsorption of the proteins from the extract to hydrophobic-functionalized supports. At first, commercial, crude tyrosinase from Agaricus bisporus (AbTyr) dissolved in aqueous media was added to octadecyl-Sepabeads matrix at 25 °C. Under these conditions, the support specifically adsorbed a protein with a molecular weight of 47 kDa which showed no tyrosinase activity.

View Article and Find Full Text PDF

Tailor-made peptides were investigated for site-specific tag labeling of Geobacillus thermocatenulatus lipase (GTL). GTL was first genetically modified by introducing a unique cysteine on the lid site of the enzyme to produce two variants (GTLσ-A193C and GTLσ-S196C). Chemical modification was performed by using a small library of cysteine-containing peptides.

View Article and Find Full Text PDF