Publications by authors named "David Lobell"

Crop rotation has been widely used to enhance crop yields and mitigate adverse climate impacts. The existing research predominantly focuses on the impacts of crop rotation under growing season (GS) climates, neglecting the influences of non-GS (NGS) climates on agroecosystems. This oversight limits our understanding of the comprehensive climatic impacts on crop rotation and, consequently, our ability to devise effective adaptation strategies in response to climate warming.

View Article and Find Full Text PDF

Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop.

View Article and Find Full Text PDF

As climate change shifts crop exposure to dry and wet extremes, a better understanding of factors governing crop response is needed. Recent studies identified shallow groundwater-groundwater within or near the crop rooting zone-as influential, yet existing evidence is largely based on theoretical crop model simulations, indirect or static groundwater data, or small-scale field studies. Here, we use observational satellite yield data and dynamic water table simulations from 1999 to 2018 to provide field-scale evidence for shallow groundwater effects on maize yields across the United States Corn Belt.

View Article and Find Full Text PDF

Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis.

View Article and Find Full Text PDF

Recycling nutrients from wastewater could simultaneously decrease the carbon intensity of traditional ammonia supply chains and increase the accessibility of local fertilizer. Despite the theoretical potential, techno-economic viability of wastewater nutrient recovery in sub-Saharan Africa has been poorly characterized at subnational scales. This work proposes a multicriteria suitability index to describe techno-economic viability of wastewater-derived fertilizer technologies with district-scale resolution.

View Article and Find Full Text PDF

Climate change will likely increase crop water demand, and farmers may adapt by applying more irrigation. Understanding the extent to which this is occurring is of particular importance in India, a global groundwater depletion hotspot, where increased withdrawals may further jeopardize groundwater resources. Using historical data on groundwater levels, climate, and crop water stress, we find that farmers have adapted to warming temperatures by intensifying groundwater withdrawals, substantially accelerating groundwater depletion rates in India.

View Article and Find Full Text PDF

Trace soil minerals are a critical determinant of both crop productivity and the mineral concentration of crops, therefore potentially impacting the nutritional status of human populations relying on those crops. We link health data from nearly 0.3 million children and one million adult women across India with over 27 million soil tests drawn from a nationwide soil health program.

View Article and Find Full Text PDF

Agricultural irrigation induces greenhouse gas emissions directly from soils or indirectly through the use of energy or construction of dams and irrigation infrastructure, while climate change affects irrigation demand, water availability and the greenhouse gas intensity of irrigation energy. Here, we present a scoping review to elaborate on these irrigation-climate linkages by synthesizing knowledge across different fields, emphasizing the growing role climate change may have in driving future irrigation expansion and reinforcing some of the positive feedbacks. This Review underscores the urgent need to promote and adopt sustainable irrigation, especially in regions dominated by strong, positive feedbacks.

View Article and Find Full Text PDF

Cover crops are gaining traction in many agricultural regions, partly driven by increased public subsidies and by private markets for ecosystem services. These payments are motivated by environmental benefits, including improved soil health, reduced erosion, and increased soil organic carbon. However, previous work based on experimental plots or crop modeling indicates cover crops may reduce crop yields.

View Article and Find Full Text PDF

Nitrogen oxides (NO) are among the most widely emitted pollutants in the world, yet their impacts on agriculture remain poorly known. NO can directly damage crop cells and indirectly affect growth by promoting ozone (O) and aerosol formation. We use satellite measures of both crop greenness and NO during 2018-2020 to evaluate crop impacts for five major agricultural regions.

View Article and Find Full Text PDF

Climate change induced heat stress is predicted to negatively impact wheat yields across the Indo-Gangetic Plains (IGP) of India. Research suggests that early sowing of wheat can substantially reduce this impact. However, a large proportion of farmers sow wheat late across this region, likely resulting in large-scale yield loss.

View Article and Find Full Text PDF

Improving compliance with environmental regulations is critical for promoting clean environments and healthy populations. In South Asia, brick manufacturing is a major source of pollution but is dominated by small-scale, informal producers who are difficult to monitor and regulate-a common challenge in low-income settings. We demonstrate a low-cost, scalable approach for locating brick kilns in high-resolution satellite imagery from Bangladesh.

View Article and Find Full Text PDF

Accurate and comprehensive measurements of a range of sustainable development outcomes are fundamental inputs into both research and policy. We synthesize the growing literature that uses satellite imagery to understand these outcomes, with a focus on approaches that combine imagery with machine learning. We quantify the paucity of ground data on key human-related outcomes and the growing abundance and improving resolution (spatial, temporal, and spectral) of satellite imagery.

View Article and Find Full Text PDF

As climate change leads to increased frequency and severity of drought in many agricultural regions, a prominent adaptation goal is to reduce the drought sensitivity of crop yields. Yet many of the sources of average yield gains are more effective in good weather, leading to heightened drought sensitivity. Here we consider two empirical strategies for detecting changes in drought sensitivity and apply them to maize in the United States, a crop that has experienced myriad management changes including recent adoption of drought-tolerant varieties.

View Article and Find Full Text PDF

Field-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played an important role in improving production forecasts and enabling large-scale study of agricultural inputs and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean at 30 m resolution across the US Midwest from 1999-2018.

View Article and Find Full Text PDF

Accurate and comprehensive measurements of economic well-being are fundamental inputs into both research and policy, but such measures are unavailable at a local level in many parts of the world. Here we train deep learning models to predict survey-based estimates of asset wealth across ~ 20,000 African villages from publicly-available multispectral satellite imagery. Models can explain 70% of the variation in ground-measured village wealth in countries where the model was not trained, outperforming previous benchmarks from high-resolution imagery, and comparison with independent wealth measurements from censuses suggests that errors in satellite estimates are comparable to errors in existing ground data.

View Article and Find Full Text PDF

Anthropogenic climate change likely influences the beginning of 2020 growing season's water deficit in parts of southern Africa, with severe consequences to food security.

View Article and Find Full Text PDF

The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure.

View Article and Find Full Text PDF
Article Synopsis
  • The assessment of recent scientific evidence supports the conclusion that six greenhouse gases pose a danger to public health and welfare.
  • New findings highlight a stronger link between these gases and various observed and projected impacts related to climate change.
  • Some impacts may be more severe than previously recognized, and there is a significant risk of additional impacts not covered in the 2009 Endangerment Finding.
View Article and Find Full Text PDF

Background: Rising atmospheric carbon dioxide concentrations are anticipated to decrease the zinc and iron concentrations of crops. The associated disease burden and optimal mitigation strategies remain unknown. We sought to understand where and to what extent increasing carbon dioxide concentrations may increase the global burden of nutritional deficiencies through changes in crop nutrient concentrations, and the effects of potential mitigation strategies.

View Article and Find Full Text PDF

A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed.

View Article and Find Full Text PDF

Elevated atmospheric CO concentrations ([CO ]) are expected to increase C3 crop yield through the CO fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat, rice, maize, and soybean together account for two-thirds of human caloric intake, making their production crucial for global food supply.
  • Different studies have shown varying effects of rising global temperatures on these crops, prompting a comprehensive assessment of their yield impacts.
  • Analysis revealed that without CO2 fertilization and effective adaptation, a one-degree increase in global temperature could lower crop yields significantly: wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%, highlighting the need for tailored strategies to ensure food security.
View Article and Find Full Text PDF

The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest ([Formula: see text] up to 0.

View Article and Find Full Text PDF

Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world.

View Article and Find Full Text PDF