Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits. First predicted 40 years ago, scars are special eigenstates that counterintuitively defy ergodicity in quantum systems whose classical counterpart is chaotic. Despite the importance and long history of scars, their direct visualization in quantum systems remains an open field.
View Article and Find Full Text PDFMaterials such as graphene and topological insulators host massless Dirac fermions that enable the study of relativistic quantum phenomena. Single quantum dots and coupled quantum dots formed with massless Dirac fermions can be viewed as artificial relativistic atoms and molecules, respectively. Such structures offer a unique testbed to study atomic and molecular physics in the ultrarelativistic regime (particle speed close to the speed of light).
View Article and Find Full Text PDFSpin-transfer torque and spin Hall effects combined with their reciprocal phenomena, spin pumping and inverse spin Hall effects (ISHEs), enable the reading and control of magnetic moments in spintronics. The direct observation of these effects remains elusive in antiferromagnetic-based devices. We report subterahertz spin pumping at the interface of the uniaxial insulating antiferromagnet manganese difluoride and platinum.
View Article and Find Full Text PDFWe review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties.
View Article and Find Full Text PDFThe NaMnF fluoride-perovskite has been found, theoretically, to be ferroelectric under epitaxial strain becoming a promising alternative to conventional oxides for multiferroic applications. Nevertheless, this fluoroperovskite has not been experimentally verified to be ferroelectric so far. Here we report signatures of room temperature ferroelectricity observed in perovskite NaMnF thin films grown on SrTiO.
View Article and Find Full Text PDFOptical injection and detection of charge currents is an alternative to conventional transport and photoemission measurements, avoiding the necessity of invasive contact that may disturb the system being examined. This is a particular concern for analyzing the surface states of topological insulators. In this work one- and two-color sources of photocurrents are isolated and examined in epitaxial thin films of BiSe.
View Article and Find Full Text PDFLow-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator BiSe.
View Article and Find Full Text PDFTransient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface-coupled topological insulator Bi2-x Mn x Se3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x = 0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x = 0.
View Article and Find Full Text PDFWe report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30 nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect.
View Article and Find Full Text PDFMultiferroic materials have simultaneous magnetic and ferroelectric long-range orders and can be potentially useful for a wide range of applications. Conventional ferroelectricity in oxide perovskites favors nonmagnetic electronic configurations of transition metal ions, thus limiting the number of intrinsic multiferroic materials. On the other hand, this is not necessarily true for multiferroic fluorides.
View Article and Find Full Text PDFGold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate.
View Article and Find Full Text PDFThree-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified.
View Article and Find Full Text PDFWe report on a >100-fold enhancement of Raman responses from Bi2Se3 thin films if laser photon energy switches from 2.33 eV (532 nm) to 1.58 eV (785 nm), which is due to direct optical coupling to Dirac surface states (SS) at the resonance energy of ∼1.
View Article and Find Full Text PDFElectron transfer in cytochrome P450 enzymes is a fundamental process for activity. It is difficult to measure electron transfer in these enzymes because under the conditions typically used they exist in a variety of states. Using nanotechnology-based techniques, gold conducting nanopillars were constructed in an indexed array.
View Article and Find Full Text PDFMyoglobin single-electron transistors were investigated using nanometer-gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without the heme group) was used as a reference. The results suggest single-electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein.
View Article and Find Full Text PDFThe magnetic anisotropy of ferromagnetic (FM) Ni, Co, and Fe polycrystalline thin films grown on antiferromagnetic (AF) FeF(2)(110) epitaxial layers was studied, as a function of temperature, using ferromagnetic resonance. In addition to an in-plane anisotropy in the FM induced by fluctuations in the AF short-range order, a perpendicular (biquadratic) magnetic anisotropy, with an out-of-plane component, was found which increased with decreasing temperature above the AF Neél temperature (T(N) = 78.4 K).
View Article and Find Full Text PDFCytochrome P450 (P450) enzymes typically require the presence of at least cytochrome P450 reductase (CPR) and NADPH to carry out the metabolism of xenobiotics. To address whether the need for redox transfer proteins and the NADPH cofactor protein could be obviated, CYP2C9 was bonded to a gold electrode through an 11-mercaptoundecanoic acid and octanethiol self-assembled monolayer (SAM) through which a current could be applied. Cyclic voltammetry demonstrated direct electrochemistry of the CYP2C9 enzyme bonded to the electrode and fast electron transfer between the heme iron and the gold electrode.
View Article and Find Full Text PDFThe cytochrome P450 enzymes represent an important class of heme-containing enzymes. There is considerable interest in immobilizing these enzymes on a surface so that interactions between a single enzyme and other species can be studied with respect to electron transfer, homodimer or heterodimer interactions, or for construction of biological-based chips for standardizing cytochrome P450 metabolism or for high-throughput screening of pharmaceutical agents. Previous studies have generally immobilized P450 enzymes in a matrix or on a surface.
View Article and Find Full Text PDFBy using the surface and element specificity of soft x-ray magnetic dichroism we provide direct experimental evidence for two different types of interfacial uncompensated Fe moments in exchange biased Co/FeF2 bilayers. Some moments are pinned and coupled antiparallel to the ferromagnet (FM). They give rise to a positive exchange bias and vanish above T(N) = 78 together with the antiferromagnet (AF) order.
View Article and Find Full Text PDFIn patients hospitalized with decompensated life-threatening heart failure, the impact of newer pharmacologic therapies and mechanical circulatory support has not yet been realized, except for those who are bridged to cardiac transplantation. For long-term support of transplant-ineligible patients who have severe biventricular failure that is refractory to optimized pharmacologic therapy, replacement of the natural heart with a totally implantable mechanical replacement heart, capable of producing blood flow of up to 8 to 10 L/min, may become the most well tolerated and effective treatment. This article summarizes the current status of the first generation implantable replacement heart (AbioCor trade mark, ABIOMED.
View Article and Find Full Text PDFOral brush biopsy results were compared with scalpel biopsy and histology to determine the positive predictive value of an abnormal brush biopsy finding. Of 243 patients with abnormal brush biopsies, 93 proved positive for dysplasia (79) or carcinoma (14) and 150 were negative for either dysplasia or carcinoma. Therefore, the positive predictive value of an abnormal brush biopsy was 38% (93/243).
View Article and Find Full Text PDFThere has been no reduction in the incidence of OOPCa, nor has the 5-year survival rate improved over the past 30 years. Most of these cancers are diagnosed in the later stages after they have grown to significant size, have become fixed to surrounding structures, hemorrhagic or painful or have caused noticeable impairment of speech or deglutition. To reduce the incidence of OOPCa and improve outcomes, the public must become more aware of the risk factors and seek regular oral cancer examination.
View Article and Find Full Text PDF