Publications by authors named "David Leach"

Current plasmid propagation in E. coli compromises large inverted repeats, such as inverted terminal repeats (ITRs) of adeno-associated virus (AAV). Direct long-read sequencing analyses upon varying strains and culture conditions revealed ITR instability caused by a slipped misalignment mechanism, although other mechanism probably contribute.

View Article and Find Full Text PDF
Article Synopsis
  • Branched DNA molecules play a critical role in DNA processes like replication and repair, making their structural understanding essential for grasping these biological mechanisms.
  • While gel electrophoresis offers a bulk analysis of DNA, direct visualization at the single-molecule level is necessary but requires pure samples free from unwanted DNA interference.
  • The study focuses on overcoming challenges in isolating large, branched DNA structures, specifically in E. coli, by utilizing techniques like β-agarase digestion and multiple rounds of gel electrophoresis for enhanced sample purity.
View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy.

View Article and Find Full Text PDF

, commonly known as scarlet bloodroot, is a plant native to New Guinea and the northern most parts of Australia. The highly coloured is used by communities in Larrakia country for dyeing garments and occasionally to treat snake bites. Previous studies into have focused on its taxonomic classification, with this being the first evaluation of the chemical composition of the plant.

View Article and Find Full Text PDF

Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokinesuppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-ɣ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaol-curcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.

View Article and Find Full Text PDF

This study aims to investigate the combined anti-inflammatory activity of ginger and turmeric extracts. By comparing the activities of individual and combined extracts in lipopolysaccharide and interferon-γ-induced murine RAW 264.7 cells, we demonstrated that ginger-turmeric combination was optimal at a specific ratio (5:2, w/w) in inhibiting nitric oxide, tumour necrosis factor and interleukin 6 with synergistic interaction (combination index < 1).

View Article and Find Full Text PDF

Synergy plays a prominent role in herbal medicines to increase potency and widen the therapeutic windows. The mechanism of synergy in herbal medicines is often associated with multi-targeted behavior and complex signaling pathways which are challenging to elucidate. This study aims to investigate the synergistic mechanism of a combination (GT) of ginger (G) and turmeric (T) extracts by exploring the modulatory activity in lipopolysaccharides (LPS)-induced inflammatory pathways and key molecular targets.

View Article and Find Full Text PDF

Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks.

View Article and Find Full Text PDF

Although the principle of systemic treatment to prevent the progression of oral premalignant lesions (OPL) has been demonstrated, there remains a lack of consensus about an optimal approach that balances clinical efficacy with toxicity concerns. Recent advances in cancer therapy using approaches targeting the tumor immune microenvironment (TIME) including immune-checkpoint inhibitors indicate that these agents have significant clinically activity against different types of cancers, including oral cancer, and therefore they may provide an effective oral cancer prevention strategy for patients with OPLs. Our past work showed that systemic delivery of a monoclonal antibody to the programmed death receptor 1 (PD-1) immune checkpoint can inhibit the progression of OPLs to oral cancer in a syngeneic murine oral carcinogenesis model.

View Article and Find Full Text PDF

Background: Intratumoral delivery of immunotherapeutics represents a compelling solution to directly address local barriers to tumor immunity. However, we have previously shown that off-target delivery is a substantial problem during intratumoral injections; this can lead to diminished drug efficacy and systemic toxicities. We have identified three variables that influence intratumoral drug delivery: injection technique, drug formulation and tumor microenvironment.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a peptide-based immunotherapy called SynerGel, which is an injectable platform for delivering drugs directly into tumors.
  • The system uses a hydrogel loaded with antitumor cyclic dinucleotide (CDN) to promote immune responses while slowing down drug release compared to traditional hydrogels.
  • In animal studies, SynerGel significantly improved survival rates for mice with treatment-resistant oral tumors, with a median survival of 67.5 days versus 44 days for untreated controls.
View Article and Find Full Text PDF

In this work, we develop a drug-mimicking nanofibrous peptide hydrogel that shows long-term bioactivity comparable to a small-molecule inhibitor of inducible nitric oxide synthase (iNOS). The iNOS inhibitor, -(1-iminoethyl)-l-lysine (l-NIL), is a positively charged amino acid whose structure could be readily integrated into the framework of a positively charged multidomain peptide (MDP) through the modification of lysine side chains. This new l-NIL-MDP maintains the self-assembling properties of the base peptide, forming -sheet nanofibers, which entangle into a thixotropic hydrogel.

View Article and Find Full Text PDF

(the immortal herb) has been an important component of Chinese Traditional Medicine for millennia. Recent clinical studies have revealed that the plant exhibits numerous beneficial biological activities, making it of interest to the pharmaceutical industry. An extract of the herb contains over 200 individual secondary metabolites including flavonol glycosides and dammarane saponins.

View Article and Find Full Text PDF

Members of the conserved Argonaute protein family use small RNA guides to locate their mRNA targets and regulate gene expression and suppress mobile genetic elements in eukaryotes. Argonautes are also present in many bacterial and archaeal species. Unlike eukaryotic proteins, several prokaryotic Argonaute proteins use small DNA guides to cleave DNA, a process known as DNA interference.

View Article and Find Full Text PDF

It is well established that DNA double-strand break (DSB) repair is required to underpin chromosomal DNA replication. Because DNA replication forks are prone to breakage, faithful DSB repair and correct replication fork restart are critically important. Cells, where the proteins required for DSB repair are absent or altered, display characteristic disturbances to genome replication.

View Article and Find Full Text PDF

To prevent the transmission of damaged genomic material between generations, cells require a system for accommodating DNA repair within their cell cycles. We have previously shown that Escherichia coli cells subject to a single, repairable site-specific DNA double-strand break (DSB) per DNA replication cycle reach a new average cell length, with a negligible effect on population growth rate. We show here that this new cell size distribution is caused by a DSB repair-dependent delay in completion of cell division.

View Article and Find Full Text PDF

Multidomain Peptide (MDP) hydrogels are nanofibrous materials with many potential biomedical applications. The peptide sequence design of these materials offers high versatility and allows for the incorporation of various chemical functionalities into the nanofibrous scaffold. It is known that host response to biomaterials is strongly affected by factors such as size, shape, stiffness, and chemistry.

View Article and Find Full Text PDF

A key characteristic of mushroom polysaccharides that elicit an immunomodulatory response is that they are rich in β-glucans and low in α-glucans. In this study we analysed nine commercially available preparations from three mushroom species, Reishi (Ganoderma lucidum), Shiitake (Lentinula edodes) and Maitake (Grifola frondosa), for β- and α-glucan content. Based on β- and α-glucan content we selected three extracts to combine into a formula and evaluated the ability of the individual extracts and formula to impact on the expression of cytokines IL-1α, IL-6, IL-10 and TNF-α in human macrophages with and without LPS stimulation.

View Article and Find Full Text PDF

Self-assembly of peptides is a powerful method of preparing nanostructured materials. These peptides frequently utilize charged groups as a convenient switch for controlling self-assembly in which pH or ionic strength determines the assembly state. Multidomain peptides have been previously designed with charged domains of amino acids, which create molecular frustration between electrostatic repulsion and a combination of supramolecular forces including hydrogen bonding and hydrophobic packing.

View Article and Find Full Text PDF

Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy.

View Article and Find Full Text PDF

Counting DNA whole genome sequencing reads is providing new insight into DNA double-strand break repair (DSBR) in the model organism Escherichia coli. We describe the application of RecA chromatin immunoprecipitation coupled to genomic DNA sequencing (RecA-ChIP-seq) and marker frequency analysis (MFA) to analyze the genomic consequences of DSBR. We provide detailed procedures for the preparation of DNA and the analysis of data.

View Article and Find Full Text PDF

DNA double-strand break (DSB) repair is critical for cell survival. A diverse range of organisms from bacteria to humans rely on homologous recombination for accurate DSB repair. This requires both coordinate action of the two ends of a DSB and stringent control of the resultant DNA replication to prevent unwarranted DNA amplification and aneuploidy.

View Article and Find Full Text PDF

In all organisms, replication impairments are an important source of genome rearrangements, mainly because of the formation of double-stranded DNA (dsDNA) ends at inactivated replication forks. Three reactions for the formation of dsDNA ends at replication forks were originally described for and became seminal models for all organisms: the encounter of replication forks with preexisting single-stranded DNA (ssDNA) interruptions, replication fork reversal, and head-to-tail collisions of successive replication rounds. Here, we first review the experimental evidence that now allows us to know when, where, and how these three different reactions occur in .

View Article and Find Full Text PDF

Chromosomal replication is the major source of spontaneous DNA double-strand breaks (DSBs) in living cells. Repair of these DSBs is essential for cell viability, and accuracy of repair is critical to avoid chromosomal rearrangements. Repair of replication-dependent DSBs occurs primarily by homologous recombination with a sister chromosome.

View Article and Find Full Text PDF

In vivo, multidomain peptide (MDP) hydrogels undergo rapid cell infiltration and elicit a mild inflammatory response which promotes angiogenesis. Over time, the nanofibers are degraded and a natural collagen-based extracellular matrix is produced remodeling the artificial material into natural tissue. These properties make MDPs particularly well suited for applications in regeneration.

View Article and Find Full Text PDF