Nanomaterials (Basel)
September 2024
In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance frequencies and the number of resonant peaks are highly dependent on the curvature of the system. To further understand the nature of the spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases, describing the differences among resonance modes observed.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2024
In this work, the effect of multi-walled carbon nanotubes (MWCNT1, MWCNT2, and MWCNT3) with different outer diameters and specific surface areas on the mechanical and electrical properties of cement mortar have been investigated. Various concentrations of MWCNTs were used (0.05, 0.
View Article and Find Full Text PDFBoronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms H, carbon C and boron B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde.
View Article and Find Full Text PDFA unified model for the analysis of two-dimensional Brinkman-Bénard/Rayleigh-Bénard/ Darcy-Bénard convection in cylindrical and rectangular enclosures (CE/RE) saturated by a Newtonian liquid is presented by adopting the local thermal non-equilibrium (LTNE) model for the heat transfer between fluid and solid phases. The actual thermophysical properties of water and porous media are used. The range of permissible values for all the parameters is calculated and used in the analysis.
View Article and Find Full Text PDFIn this theoretical investigation, we delve into the significant effects of donor impurity position within core/shell quantum dot structures: type I (CdTe/ZnS) and type II (CdTe/CdS). The donor impurity's precise location within both the core and the shell regions is explored to unveil its profound influence on the electronic properties of these nanostructures. Our study investigates the diamagnetic susceptibility and binding energy of the donor impurity while considering the presence of an external magnetic field.
View Article and Find Full Text PDFUsing first-principle calculations, we investigate the impact of strain on the electronic structures and effective masses of Janus WSTe and MoSTe monolayers. The calculations were performed using the QUANTUM-ESPRESSO package, employing the PBE and HSE06 functionals. Our results demonstrate that strain fundamentally changes the electronic structures of the Janus WSTe and MoSTe monolayers.
View Article and Find Full Text PDFIn this work, the effect of biosilica concentration and two different mixing methods with Portland cement on the compressive strength of cement-based mortars were investigated. The following values of the biosilica concentration of cement weight were investigated։ 2.5, 5, 7.
View Article and Find Full Text PDFIn this work, we present a theoretical study on the use of CuZnSn(S,Se) quantum wells in CuZnSnS solar cells to enhance device efficiency. The role of different well thickness, number, and S/(S + Se) composition values is evaluated. The physical mechanisms governing the optoelectronic parameters are analyzed.
View Article and Find Full Text PDFThe seismo-electromagnetic theory describes the growth of fractally distributed cracks within the lithosphere that generate the emission of magnetic anomalies prior to large earthquakes. One of the main physical properties of this theory is their consistency regarding the second law of thermodynamics. That is, the crack generation of the lithosphere corresponds to the manifestation of an irreversible process evolving from one steady state to another.
View Article and Find Full Text PDFThis work analyzes the magnetic configurations of cylindrical nanowires with a bulk Dzyaloshinskii-Moriya interaction and easy-plane anisotropy. We show that this system allows the nucleation of a metastable toron chain even when no out-of-plane anisotropy exists in the nanowire's top and bottom surfaces, as usually required. The number of nucleated torons depends on the nanowire length and the strength of an external magnetic field applied to the system.
View Article and Find Full Text PDFA numerical simulation is a valuable tool since it allows the optimization of both time and the cost of experimental processes for time optimization and the cost of experimental processes. In addition, it will enable the interpretation of developed measurements in complex structures, the design and optimization of solar cells, and the prediction of the optimal parameters that contribute to manufacturing a device with the best performance. In this sense, a detailed simulation study was carried out in this work by the Solar Cell Capacitance Simulator (SCAPS).
View Article and Find Full Text PDFThis study investigates the effect of quantum size and an external magnetic field on the optoelectronic properties of a cylindrical AlxGa1-xAs/GaAs-based core/shell nanowire. We used the one-band effective mass model to describe the Hamiltonian of an interacting electron-donor impurity system and employed two numerical methods to calculate the ground state energies: the variational and finite element methods. With the finite confinement barrier at the interface between the core and the shell, the cylindrical symmetry of the system revealed proper transcendental equations, leading to the concept of the threshold core radius.
View Article and Find Full Text PDFThe use of computational methods that allow us to perform characterization on new compounds is not a novelty; nevertheless, the degree of complexity of the structures makes their study more challenging since new techniques and methods are required to adjust to the new structural model. The case of nuclear magnetic resonance characterization of boronate esters is fascinating because of its widespread use in materials science. In this paper, we use density functional theory to characterize the structure of the compound 1-[5-(4,5-Dimethyl-1,3,2-dioxaborolan-2-yl)thiophen-2-yl]ethanonea by means of nuclear magnetic resonance.
View Article and Find Full Text PDFAmorphous microwires have attracted substantial attention in the past decade because of their useful technological applications. Their bistable magnetic response is determined by positive or negative magnetostriction, respectively. First-order reversal curves (FORC) are a powerful tool for analyzing the magnetization reversal processes of many-body ferromagnetic systems that are essential for a deeper understanding of those applications.
View Article and Find Full Text PDFUsing numerical simulations, we studied the dynamics of two skyrmions nucleated in a double-disk structure. Depending on the geometry and the electric current, different regimes for the dynamical behavior of the skyrmions were obtained. Our results evidence that there are four main dynamic regimes depending on the geometry and current: stagnation points, oscillatory motion, and two types of skyrmion annihilation: partial and total.
View Article and Find Full Text PDFThe kesterite Cu2ZnGeS4 (CZGS) has recently gained significant interest in the scientific community. In this work, we investigated the thermodynamic and thermoelectric properties of CZGS by employing the first-principals calculation in association with the quasi-harmonic approximation, Boltzmann transport theory, deformation potential theory, and slack model. We obtained a bandgap of 2.
View Article and Find Full Text PDFThe present article describes the unsteady flow of a couple stress via a ternary hybrid nanofluid on a stretching surface with porous media. The nanofluid exhibits important properties for increasing heat transmission, and it is widely used in manufacturing and industrial applications. The basic similarity equations have been discovered to accommodate both stretching/shrinking surfaces.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
In this work, we present an analysis of skyrmion dynamics considering Dzyaloshinskii-Moriya interactions in an STNO device with a double-disk geometry. Three regimes were observed as a function of geometric parameters and the electric current density: (i) the skyrmion is annihilating at the system's border; (ii) the skyrmion moves in a non-circular trajectory alternating its position between the two disks, and (iii) the skyrmion only rotates inside a one-disk subsystem. For the annihilation state, we found that the transient time decays within a stretched exponential law as a function of the electric current.
View Article and Find Full Text PDFNanoflakes ultra-thin quantum dots are theoretically studied as innovative nanomaterials delivering outstanding results in various high fields. In this work, we investigated the surface properties of an electron confined in spherical ultra-thin quantum dots in the presence of an on-center or off-center donor impurity. Thus, we have developed a novel model that leads us to investigate the different nanoflake geometries by changing the spherical nanoflake coordinates (, α, ϕ).
View Article and Find Full Text PDFWe explore the localization properties of a double-stranded ladder within a tight-binding framework where the site energies of different lattice sites are distributed in the cosine form following the Aubry-André-Harper (AAH) model. An imaginary site energy, which can be positive or negative, referred to as physical gain or loss, is included in each of these lattice sites which makes the system a non-Hermitian (NH) one. Depending on the distribution of imaginary site energies, we obtain balanced and imbalanced NH ladders of different types, and for all these cases, we critically investigate localization phenomena.
View Article and Find Full Text PDFUsing the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an applied magnetic field and (ii) CdSe-CdTe core-shell type-II quantum dot. For the first system, the impurity position and the applied magnetic field direction were chosen to preserve the system's azimuthal symmetry. The finite element method obtains the solution of the Schrödinger equations for electron or hole with or without impurity with an adaptive discretization of a triangular mesh.
View Article and Find Full Text PDFFollowing the chronological stages of calculations imposed by the WIEN2K code, we have performed a series of density functional theory calculations, from which we were able to study the effect of strain on the kesterite structures for two quaternary semiconductor compounds Cu2ZnGeS4 and Cu2ZnGeSe4. Remarkable changes were found in the electronic and optical properties of these two materials during the application of biaxial strain. Indeed, the band gap energy of both materials decreases from the equilibrium state, and the applied strain is more pronounced.
View Article and Find Full Text PDFIn this work, we perform a numerical study of magnetoresistance in a one-dimensional quantum heterostructure, where the change in electrical resistance is measured between parallel and antiparallel configurations of magnetic layers. This layered structure also incorporates a non-magnetic spacer, subjected to quasi-periodic potentials, which is centrally clamped between two ferromagnetic layers. The efficiency of the magnetoresistance is further tuned by injecting unpolarized light on top of the two sided magnetic layers.
View Article and Find Full Text PDFWe have studied the parallel and perpendicular electric field effects on the system of SiGe prolate and oblate quantum dots numerically, taking into account the wetting layer and quantum dot size effects. Using the effective-mass approximation in the two bands model, we computationally calculated the extensive variation of dipole matrix (DM) elements, bandgap and non-linear optical properties, including absorption coefficients, refractive index changes, second harmonic generation and third harmonic generation as a function of the electric field, wetting layer size and the size of the quantum dot. The redshift is observed for the non-linear optical properties with the increasing electric field and an increase in wetting layer thickness.
View Article and Find Full Text PDFSolar cells that are based on the implementation of quantum dots in the intrinsic region, so-called intermediate band solar cells (IBSCs), are among the most widely used concepts nowadays for achieving high solar conversion efficiency. The principal characteristics of such solar cells relate to their ability to absorb low energy photons to excite electrons through the intermediate band, allowing for conversion efficiency exceeding the limit of Shockley-Queisser. IBSCs are generating considerable interest in terms of performance and environmental friendliness.
View Article and Find Full Text PDF