ACS Appl Mater Interfaces
March 2024
Rapid detection of pathogens and analytes at the point of care offers an opportunity for prompt patient management and public health control. This paper reports an open microfluidic platform coupled with active whispering gallery mode (WGM) microsphere resonators for the rapid detection of influenza viruses. The WGM microsphere resonators, precoated with influenza A polyclonal antibodies, are mechanically trapped in the open micropillar array, where the evaporation-driven flow continuously transports a small volume (∼μL) of sample to the resonators without auxiliaries.
View Article and Find Full Text PDFThin films of BaFCl:Sm nanocrystals prepared using a polymer binder were used to create fluorescence images. The phosphor films were exposed to a UV-C mercury lamp light source chromium-coated quartz greyscale masks to create 4 μm resolution greyscale fluorescence images. The mechanism relies on the highly efficient conversion of Sm to Sm ions upon exposure to UV-C light which displays a large linear dynamic range.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) with ratiometric sensing properties are desirable for many applications due to their intrinsic self-calibration. We report the re-assessment of the sensing properties of a MOF, originally reported as containing europium(III) and 2-hydroxyterephtalic acid, and having fluorescent ratiometric iron(III) sensing properties. Synchrotron single-crystal X-ray diffraction and proton nuclear magnetic resonance (H NMR) spectroscopy revealed that the MOF is composed of 2-methoxyterephthalate, not 2-hydroxyterephthalate as originally reported.
View Article and Find Full Text PDFThe rapid development of optofluidic technologies in recent years has seen the need for sensing platforms with ease-of-use, simple sample manipulation, and high performance and sensitivity. Herein, an integrated optofluidic sensor consisting of a pillar array-based open microfluidic chip and caged dye-doped whispering gallery mode microspheres is demonstrated and shown to have potential for simple real-time monitoring of liquids. The open microfluidic chip allows for the wicking of a thin film of liquid across an open surface with subsequent evaporation-driven flow enabling continuous passive flow for sampling.
View Article and Find Full Text PDFGraded-index optical fiber probes suitable for focusing or collimating the output of an optical fiber at a wavelength of 1.3 µm have become an enabling technology in optical coherence tomography imaging applications for in vivo bioimaging. Such fiber tips however remain uncommon in other photonics applications.
View Article and Find Full Text PDFTo support the growing landscape of near to mid-IR laser applications we demonstrate a range of low propagation loss femtosecond laser (FSL) written waveguides (WGs) that have achieved guided-mode laser operation in a rare earth (RE) doped lead-germanate glass. The WGs are fabricated in both the athermal and thermal FSL writing regimes using three different pulse repetition frequencies (PRF): 100 kHz (athermal); 1 MHz; and 5 MHz (thermal). The lasing capability of Yb doped lead-germanate waveguides is verified in the near-IR.
View Article and Find Full Text PDFThis paper describes the design and characterization of miniaturized optofluidic devices for sensing based on integrating collimating optical fibers with custom microfluidic chips. The use of collimating graded-index fiber (GIF) tips allows for effective fiber-channel-fiber interfaces to be realized when compared with using highly-divergent standard single-mode fiber (SMF). The reduction in both beam divergence and insertion losses for the GIF configuration compared with SMF was characterized for a 10.
View Article and Find Full Text PDFFemtosecond laser inscribed fiber Bragg gratings in pure-silica suspended-core optical fibers have previously been demonstrated as a promising platform for high temperature sensing. However, the density of gratings that could be written on a single fiber was limited by undesired reflections associated with higher order modes in these high numerical aperture fibers. This resulted in a complex, broadband reflection spectrum with limited multiplexing capability.
View Article and Find Full Text PDFThe evanescent fields along multimode fibers are usually relatively weak. To enhance the sensitivity of the resulting sensors, skew rays have been exploited for their larger number of total internal reflections and their more comprehensive spread over the fiber surface. The uniform distribution of light-matter interactions across the fiber surface facilitates high sensitivity through an increased interaction area, while mitigating the risk of laser-induced coating-material damage and photobleaching.
View Article and Find Full Text PDFBackground: O-negative red blood cells (ON-RBC) are a precious resource and the international blood banking community has become increasingly concerned with its inappropriate utilization. AABB recently made several recommendations to address the issue. Solutions must be multifaceted and involve donor centers, blood banks, and clinical departments.
View Article and Find Full Text PDFA guided-wave chip laser operating in a single longitudinal mode at 2860 nm is presented. The cavity was set in the Littman-Metcalf configuration to achieve single-frequency operation with a side-mode suppression ratio above 33 dB. The chip laser's 2 MHz linewidth on a 10 ms scale was found to be limited by mechanical fluctuations, but its Lorentzian contribution was estimated to be lower than 1 Hz using a heterodyne technique.
View Article and Find Full Text PDFA stronger absorption of pump/probe light is desirable for maximizing the sensitivity to enable accurate measurements of trace chemical elements. We introduce a new sensing technique built on light-sheet excitation of skew rays in a multimode fiber with an additional enhancement of localized surface plasmon resonance (LSPR) and its evanescent-field hotspots between gold nanospheres on the coated fiber. A skewed light-sheet (i.
View Article and Find Full Text PDFAbsorption lines of methane in the 2ν band centered at 1650 nm were measured with a free-running mode-locked dual-comb laser based on a single erbium-doped glass chip. The laser's spectra were broadened up to 1670 nm using amplifiers and highly nonlinear fiber. A comb was used to interrogate the complex transmission spectrum of a methane-filled gas cell with an optical point spacing of 968 MHz and an interferogram (IGM) rate of 27 kHz to yield absorption lines of the R and Q branches.
View Article and Find Full Text PDFThere is a deficiency of low-loss microstructured waveguides that can be fabricated with a single laser-pass to minimize stress build-up, which can enable enhanced functionality and higher compactness for integrated optical devices. We demonstrate, for the first time, a series of multi-ring claddings each with a pair of cores in BK7 glass. Each waveguide was fabricated using only a single laser-pass at 1 MHz pulse repetition rate, 5 mm/s translation speed, 250 fs pulse width, over a set of pulse energies.
View Article and Find Full Text PDFWe present a novel approach to study continuous-wave mode-locking in a waveguide laser in the presence of a gain profile with complex features. We introduce a new simulation approach where we separate the role of gain, nonlinearity, dispersion and saturable absorption elements to provide a better understanding of the interplay between these elements. In particular, we use the simulation to explain synchronised dual-wavelength mode-locking.
View Article and Find Full Text PDFBackground: The ordering process at Stanford Health Care involved twice-daily shipments predicated upon current stock levels from the blood center to the hospital transfusion service. Manual census determination is time consuming and error prone. We aimed to enhance inventory management by developing an informatics platform to streamline the ordering process and reallocate staff productivity.
View Article and Find Full Text PDFUltrafast laser inscribed waveguide lasers can lead to highly efficient and compact optical devices. This Letter reports an average lasing efficiency of 65%±2.5% from a multi-waveguide 2.
View Article and Find Full Text PDFWe characterize the frequency noise performance of a free-running dual-comb source based on an erbium-doped glass chip running two adjacent mode-locked waveguide lasers. This compact laser platform, contained only in a 1.2 L volume, rejects common-mode environmental noise by 20 dB thanks to the proximity of the two laser cavities.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFOptical microfibers possess excellent optical and mechanical properties that have been exploited for sensing. We highlight the authors' recent work in the areas of current, temperature, acceleration, acoustic, humidity and ultraviolet-light sensing based on this exquisite technology, and the advantages and challenges of using optical microfibers are discussed.
View Article and Find Full Text PDFIn order to address the issue of pathogenic bacterial colonization of diabetic wounds, a more direct and robust approach is required, which relies on a physical form of bacterial destruction in addition to the conventional biochemical approach (i.e., antibiotics).
View Article and Find Full Text PDFReal-time measurement of the relative humidity of air has applications ranging from process control to safety. By using a microfiber form-factor, we demonstrate a miniature and fast-response hygrometer with the shortest-ever response time (3 ms). The sensor head consists of an optical microfiber of 10 µm diameter and 2 mm length configured to form a compact U-shaped probe, and functionalized with a polyelectrolyte multilayer coating of 1.
View Article and Find Full Text PDFWe present a dual-comb spectrometer based on two passively mode-locked waveguide lasers integrated in a single Er-doped ZBLAN chip. This original design yields two free-running frequency combs having a high level of mutual stability. We developed in parallel a self-correction algorithm that compensates residual relative fluctuations and yields mode-resolved spectra without the help of any reference laser or control system.
View Article and Find Full Text PDF