Publications by authors named "David Lafleur"

While conventional chimeric antigen-receptor (CAR)-T therapies have shown remarkable clinical activity in some settings, they can induce severe toxicities and are rarely curative. To address these challenges, we developed a controllable cell therapy where synthetic D-domain-containing proteins (soluble protein antigen-receptor X-linker [SparX]) bind one or more tumor antigens and mark those cells for elimination by genetically modified T cells (antigen-receptor complex [ARC]-T). The chimeric antigen receptor was engineered with a D-domain that specifically binds to the SparX protein via a unique TAG, derived from human alpha-fetoprotein.

View Article and Find Full Text PDF

Recent evidence suggests that performing a task inducing saccades will improve stability when compared to static fixation. However, they assume the linearity of postural control by only interpreting the area of displacement and/or the velocity of sway. Conversely, non-linear measures could bring a complementary understanding of postural control.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapies directed against B-cell maturation antigen (BCMA) have shown compelling clinical activity and manageable safety in subjects with relapsed and refractory multiple myeloma (RRMM). Prior reported CAR T cells have mostly used antibody fragments such as humanized or murine single-chain variable fragments or camelid heavy-chain antibody fragments as the antigen recognition motif. Herein, we describe the generation and preclinical evaluation of ddBCMA CAR, which uses a novel BCMA binding domain discovered from our D domain phage display libraries and incorporates a 4-1BB costimulatory motif and CD3-zeta T-cell activation domain.

View Article and Find Full Text PDF

Recent research showed that artificially immobilizing the center of mass (COM) of participants in a standing position increased the center of pressure (COP) variability. This increase has been interpreted as an exploratory behavior. The objectives of this study are to investigate if this exploratory behavior is (1) reflected in other COP variables and (2) automatically controlled using a dual-task paradigm.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapies have demonstrated impressive initial response rates in hematologic malignancies. However, relapse rates are significant, and robust efficacies in other indications, such as solid tumors, will likely require novel therapeutic strategies and CAR designs. To that end, we sought to develop simple, highly selective targeting domains (D domains) that could be incorporated into complex, multifunctional therapeutics.

View Article and Find Full Text PDF

The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences.

View Article and Find Full Text PDF

Despite the clinical success of anti-tumor necrosis factor (TNF) therapies in the treatment of inflammatory conditions such as rheumatoid arthritis, Crohn disease and psoriasis, full control of the diseases only occurs in a subset of patients and there is a need for new therapeutics with improved efficacy against broader patient populations. One possible approach is to combine biological therapeutics, but both the cost of the therapeutics and the potential for additional toxicities needs to be considered. In addition to the various mediators of immune and inflammatory pathways, angiogenesis is reported to contribute substantially to the overall pathogenesis of inflammatory diseases.

View Article and Find Full Text PDF

Although substantial research effort has focused on developing pharmacological treatments for cocaine abuse, no effective medications have been developed. Recent studies show that enzymes that metabolize cocaine in the periphery, forestalling its entry into the brain, can prevent cocaine toxicity and its behavioral effects in rodents. Here we report on effects of one such enzyme (Albu-CocH) on the pharmacokinetic and behavioral effects of cocaine in squirrel monkeys.

View Article and Find Full Text PDF

Successive rational mutations of human butyrylcholinesterase (BChE) followed by fusion to human serum albumin have yielded an efficient hydrolase that offers realistic options for therapy of cocaine overdose and abuse. This albumin-BChE prevented seizures in rats given a normally lethal cocaine injection (100 mg/kg, i.p.

View Article and Find Full Text PDF

Interferon-kappa (IFN-kappa) is a type I IFN expressed by keratinocytes, monocytes and dendritic cells (DCs). In human keratinocytes, it is produced in response to double-stranded RNA (dsRNA) and other IFNs and protects from viral infections. In monocytes and DCs, IFN-kappa induces tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) and inhibits lipopolysaccharide (LPS)-induced IL-12.

View Article and Find Full Text PDF

The long half-life and stability of human serum albumin (HSA) make it an attractive candidate for fusion to short-lived therapeutic proteins. Albuferon (Human Genome Sciences [HGS], Inc., Rockville, MD) beta is a novel recombinant protein derived from a gene fusion of interferon-beta (IFN-beta ) and HSA.

View Article and Find Full Text PDF

IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal.

View Article and Find Full Text PDF