Publications by authors named "David La Fleur"

While conventional chimeric antigen-receptor (CAR)-T therapies have shown remarkable clinical activity in some settings, they can induce severe toxicities and are rarely curative. To address these challenges, we developed a controllable cell therapy where synthetic D-domain-containing proteins (soluble protein antigen-receptor X-linker [SparX]) bind one or more tumor antigens and mark those cells for elimination by genetically modified T cells (antigen-receptor complex [ARC]-T). The chimeric antigen receptor was engineered with a D-domain that specifically binds to the SparX protein via a unique TAG, derived from human alpha-fetoprotein.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapies directed against B-cell maturation antigen (BCMA) have shown compelling clinical activity and manageable safety in subjects with relapsed and refractory multiple myeloma (RRMM). Prior reported CAR T cells have mostly used antibody fragments such as humanized or murine single-chain variable fragments or camelid heavy-chain antibody fragments as the antigen recognition motif. Herein, we describe the generation and preclinical evaluation of ddBCMA CAR, which uses a novel BCMA binding domain discovered from our D domain phage display libraries and incorporates a 4-1BB costimulatory motif and CD3-zeta T-cell activation domain.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapies have demonstrated impressive initial response rates in hematologic malignancies. However, relapse rates are significant, and robust efficacies in other indications, such as solid tumors, will likely require novel therapeutic strategies and CAR designs. To that end, we sought to develop simple, highly selective targeting domains (D domains) that could be incorporated into complex, multifunctional therapeutics.

View Article and Find Full Text PDF

The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences.

View Article and Find Full Text PDF

Despite the clinical success of anti-tumor necrosis factor (TNF) therapies in the treatment of inflammatory conditions such as rheumatoid arthritis, Crohn disease and psoriasis, full control of the diseases only occurs in a subset of patients and there is a need for new therapeutics with improved efficacy against broader patient populations. One possible approach is to combine biological therapeutics, but both the cost of the therapeutics and the potential for additional toxicities needs to be considered. In addition to the various mediators of immune and inflammatory pathways, angiogenesis is reported to contribute substantially to the overall pathogenesis of inflammatory diseases.

View Article and Find Full Text PDF

CC chemokine ligand 14, CCL14, is a human CC chemokine that is of recent interest because of its natural ability, upon proteolytic processing of the first eight NH2-terminal residues, to bind to and signal through the human immunodeficiency virus type-1 (HIV-1) co-receptor, CC chemokine receptor 5 (CCR5). We report X-ray crystallographic structures of both full-length CCL14 and signaling-active, truncated CCL14 [9-74] determined at 2.23 and 1.

View Article and Find Full Text PDF

The long half-life and stability of human serum albumin (HSA) make it an attractive candidate for fusion to short-lived therapeutic proteins. Albuferon (Human Genome Sciences [HGS], Inc., Rockville, MD) beta is a novel recombinant protein derived from a gene fusion of interferon-beta (IFN-beta ) and HSA.

View Article and Find Full Text PDF

IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal.

View Article and Find Full Text PDF