The objective of this study was to determine if coagulation is different between 6% hetastarch in normal saline (NS) and 6% hetastarch in lactated Ringer's solution (LR), with use of an ex vivo thromboelastography (TEG) model with healthy donated volunteer blood. We simulated hemodilution that occurs during clinical resuscitation of hemorrhagic or hypovolemic shock, using healthy human donor whole blood (WB) ex vivo. Coagulopathy related to low, medium, high, or very high dilution of WB with NS or a high-molecular-weight hetastarch-based plasma expander, 6% hetastarch in NS (HSNS) or 6% hetastarch in lactated Ringer's [Hextend (HSLR)], was analyzed by thromboelastography (TEG).
View Article and Find Full Text PDFObjectives: Because hetastarches have deleterious effects on coagulation that increase with molecular weight (MWt), risk of coagulopathy associated with a high MWt hemoglobin-based oxygen carrier (HBOC) was studied.
Design: Preliminary laboratory study of donor blood using thromboelastography (TEG).
Setting: University laboratory.
Helicobacter pylori is a Gram-negative neutralophile associated with peptic ulcers and gastric cancer. It has a unique ability to colonize the human stomach by acid acclimation. It uses the pH-gated urea channel, UreI, to enhance urea access to intrabacterial urease and a membrane-anchored periplasmic carbonic anhydrase to regulate periplasmic pH to approximately 6.
View Article and Find Full Text PDFCancer Immunol Immunother
June 2006
Dendritic cell (DC) administration to CD8alpha knock-out (CD8alphaKO) mice results in a strong antigen-non-specific protection to a B16 murine melanoma tumor challenge. This response is mediated by lytic NK cells and cytokine-producing CD4 cells. We aimed to determine the signals that guide tumor targeting of this response.
View Article and Find Full Text PDFReciprocal interactions between Helicobacter pylori and cells of the gastric epithelium to which it adheres may affect colonization. Changes in gene expression of H. pylori induced by adhesion to AGS gastric cancer cells by coculture were compared to changes in gene expression of H.
View Article and Find Full Text PDFThe size and complexity of many pH-gated channels have frustrated the development of specific structural models. The small acid-activated six-membrane segment urea channel of Helicobacter hepaticus (HhUreI), homologous to the essential UreI of the gastric pathogen Helicobacter pylori, enables identification of all the periplasmic sites of proton gating by site-directed mutagenesis. Exposure to external acidity enhances [(14)C]urea uptake by Xenopus oocytes expressing HhUreI, with half-maximal activity (pH(0.
View Article and Find Full Text PDFHelicobacter pylori is an aetiological agent of gastric disease. Although the role of urease in gastric colonization of H. pylori has been shown, it remains unclear as to where urease is located in this bacterial cell.
View Article and Find Full Text PDFHelicobacter pylori is a neutralophilic, gram-negative, ureolytic organism that is able to colonize the human stomach but does not survive in a defined medium with a pH <4.0 unless urea is present. In order to live in the gastric environment, it has developed a repertoire of acid resistance mechanisms that can be classified into time-independent, acute, and chronic responses.
View Article and Find Full Text PDFSecretion of proteins by Helicobacter pylori may contribute to gastric inflammation and epithelial damage. An in vitro analysis was designed to identify proteins released by mechanisms other than nonspecific lysis. The radioactivity of proteins in the supernatant was compared with that of the intact organism by two-dimensional gel phosphorimaging following a 4-h pulse-chase.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2003
Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile.
View Article and Find Full Text PDFBackground & Aims: Helicobacter pylori, a neutralophile, uses acid neutralization by urease to combat gastric acidity, allowing gastric colonization. Both acute and chronic acid resistance mechanisms are present. Acute mechanisms of acid adaptation could be due to surface urease, increased inner-membrane urea permeability via UreI, or both.
View Article and Find Full Text PDF