Publications by authors named "David L Topping"

Propolis is an important hive product and considered beneficial to health. However, evidence of its potential for improving gut health is still lacking. Here we use rats to examine whether dietary supplementation with propolis could be used as a therapy for ulcerative colitis.

View Article and Find Full Text PDF

Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon.

View Article and Find Full Text PDF

Using barley cultivars differing widely in β-glucan content, we aimed to determine their effects on small intestinal macronutrient digestion in 24 ileorectostomised rats. The rats were fed 1 of 4 experimental diets, each containing a different barley variety, for 11 d. The diets had a content of 0, 2.

View Article and Find Full Text PDF

Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate how a moderate increase in dietary meat content combined (or not) with soluble fibre would influence protein digestion as well as digesta characteristics and flow.

Methods: Four groups of pigs were fed Western-style diets (high-protein/high-fat) containing two types of barbecued red meat, one with and one without a wheat arabinoxylan-rich fraction. After 4 wk, digesta samples were collected from small and large intestinal sites and analyzed for protein, amino acids, dry matter, and acid-insoluble ash.

View Article and Find Full Text PDF

Epidemiological studies have identified increased colorectal cancer (CRC) risk with high red meat (HRM) intakes, whereas dietary fibre intake appears to be protective. In the present study, we examined whether a HRM diet increased rectal O(6)-methyl-2-deoxyguanosine (O(6)MeG) adduct levels in healthy human subjects, and whether butyrylated high-amylose maize starch (HAMSB) was protective. A group of twenty-three individuals consumed 300 g/d of cooked red meat without (HRM diet) or with 40 g/d of HAMSB (HRM+HAMSB diet) over 4-week periods separated by a 4-week washout in a randomised cross-over design.

View Article and Find Full Text PDF

Background And Aim: Dietary fiber shortens gut transit time, but data on the effects of fiber components (including resistant starch, RS) on intestinal contractility are limited. We have examined RS effects in male Sprague-Dawley rats fed either a high-amylose maize starch (HAMS) or a wholemeal made from high-amylose wheat (HAW) on ileal and colonic contractility ex vivo and expression of genes associated with smooth muscle contractility.

Methods: Rats were fed diets containing 19 % fat, 20 % protein, and either low-amylose maize starch (LAMS), HAMS, wholemeal low-amylose wheat (LAW) or HAW for 11 week.

View Article and Find Full Text PDF

Population studies suggest that greater dietary fiber intake may lower colorectal cancer (CRC) risk, possibly through the colonic bacterial fermentative production of butyrate. Butyrylated starch delivers butyrate to the colon of humans with potential to reduce CRC risk but high doses may exacerbate risk through promoting epithelial proliferation. Here we report the effects of increasing dietary butyrylated high amylose maize starch (HAMSB) on azoxymethane (AOM) induced distal colonic DNA damage, cell proliferation, mucus layer thickness and apoptosis in rats.

View Article and Find Full Text PDF

High red meat (HRM) intake is associated with increased colorectal cancer risk, while resistant starch is probably protective. Resistant starch fermentation produces butyrate, which can alter microRNA (miRNA) levels in colorectal cancer cells in vitro; effects of red meat and resistant starch on miRNA expression in vivo were unknown. This study examined whether a HRM diet altered miRNA expression in rectal mucosa tissue of healthy volunteers, and if supplementation with butyrylated resistant starch (HRM+HAMSB) modified this response.

View Article and Find Full Text PDF

Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear.

View Article and Find Full Text PDF

Background: Butyrate delivery to the large bowel may positively modulate commensal microbiota and enhance immunity.

Objective: To determine the effects of increasing large bowel butyrate concentration through ingestion of butyrylated high amylose maize starch (HAMSB) on faecal biochemistry and microbiota, and markers of immunity in healthy active individuals.

Design: Male and female volunteers were assigned randomly to consume either two doses of 20 g HAMSB (n = 23; age 37.

View Article and Find Full Text PDF
Article Synopsis
  • The paper talks about how the usual idea of how colorectal cancer develops isn't complete and misses important factors from the environment.
  • It suggests that colorectal cancer might happen because cells in the colon are harmed by things like too much ammonia and not enough food, which makes the cells change to survive.
  • The researchers found that eating a lot of protein but not enough fiber can make things worse for the colon, but eating certain fibers can help fix the problems and lower cancer risk.
View Article and Find Full Text PDF

Colorectal cancer (CRC) is a leading cause of preventable cancer deaths worldwide, with dietary factors being recognised as key risk modifiers. Foods containing dietary fibre are protective to a degree that the World Cancer Research Fund classifies the evidence supporting their consumption as 'convincing'. The mechanisms by which fibre components protect against CRC remain poorly understood, especially their interactions with the gut microbiome.

View Article and Find Full Text PDF

Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) generated by RNA interference] for 11 wk (n = 10/group). A control diet included 7% fat, 13% protein, and LAMS.

View Article and Find Full Text PDF

Population studies show that greater red and processed meat consumption increases colorectal cancer risk, whereas dietary fibre is protective. In rats, resistant starches (a dietary fibre component) oppose colonocyte DNA strand breaks induced by high red meat diets, consistent with epidemiological data. Protection appears to be through SCFA, particularly butyrate, produced by large bowel carbohydrate fermentation.

View Article and Find Full Text PDF

Animal studies show that increasing large bowel butyrate concentration through ingestion of butyrylated or resistant starches opposes carcinogen-induced tumorigenesis, which is consistent with population data linking greater fiber consumption with lowered colorectal cancer (CRC) risk. Butyrate has been shown to regulate the apoptotic response to DNA damage. This study examined the impact of increasing large bowel butyrate concentration by dietary butyrylated starch on the colonic epithelium of rats treated with the genotoxic carcinogen azoxymethane (AOM).

View Article and Find Full Text PDF

Background & Aims: Population studies indicate that greater red meat consumption increases colorectal cancer risk while dietary fibre is protective. Previous work in rats showed that diets high in protein, including red meat, increase colonocyte DNA strand breaks and that this effect is attenuated by resistant starches (RS). Telomeres are long hexamer repeats that protect against spontaneous DNA damage which would lead to chromosomal instability.

View Article and Find Full Text PDF

Background: Short-chain fatty acids (SCFAs) maintain human colonic function and may help prevent colonic disease. A study with ileostomists showed that starches acylated with specific SCFAs largely survive passage through the small intestine, but the percentage released in the colon has not been established.

Objective: The objective was to determine the percentage of ingested esterified butyrate released in the human gastrointestinal tract.

View Article and Find Full Text PDF

Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermentation modified these effects. Mice (n = 72) were fed 15% or 30% protein as casein or red meat or 30% protein with 10% high amylose maize starch as the source of resistant starch.

View Article and Find Full Text PDF

This study examined the role of degree of polymerization (DP) of inulin-fructans in modulating the interaction between lactic acid bacteria and IgA cecal secretion. Rats were fed a control diet or a diet containing one of the fructans with different DP. Consuming fructans increased the cecal IgA concentrations in the order DP4 > DP8 > DP16.

View Article and Find Full Text PDF