In November 2018, the Camp Fire devastated the mountain community of Paradise, CA. The burning of plastic pipes, wiring, construction materials, paint, and car batteries released toxic chemicals into the environment, contaminating the air, soil, and local waterways. Examples of toxins that were identified in the creeks and waterways in and around Paradise included pentachlorophenol (PCP), chrysene, and polyaromatic hydrocarbons.
View Article and Find Full Text PDFBioinform Biol Insights
August 2021
Neutrophils are a type of white blood cell essential for the function of the innate immune system. To elucidate mechanisms of neutrophil biology, many studies are performed in vertebrate animal model systems. In (zebrafish), in vivo imaging of neutrophils is possible due to transgenic strains that possess fluorescently labeled leukocytes.
View Article and Find Full Text PDFThe diversity of cell lineages that comprise mature blood in vertebrate animals arise from the differentiation of hematopoietic stem and progenitor cells (HSPCs). This is a critical process that occurs throughout the lifespan of organisms, and disruption of the molecular pathways involved during embryogenesis can have catastrophic long-term consequences. For a multitude of reasons, zebrafish (Danio rerio) has become a model organism to study hematopoiesis.
View Article and Find Full Text PDFThe gene SON is on human chromosome 21 (21q22.11) and is thought to be associated with hematopoietic disorders that accompany Down syndrome. Additionally, SON is an RNA splicing factor that plays a role in the transcription of leukemia-associated genes.
View Article and Find Full Text PDFThe majority of chronic myeloid leukemia (CML) cases are caused by a chromosomal translocation linking the breakpoint cluster region (BCR) gene to the Abelson murine leukemia viral oncogene-1 (ABL1), creating the mutant fusion protein BCR-ABL1. Downstream of BCR-ABL1 is growth factor receptor-bound protein-2 (GRB2), an intracellular adapter protein that binds to BCR-ABL1 via its src-homology-2 (SH2) domain. This binding constitutively activates growth pathways, downregulates apoptosis, and leads to an over proliferation of immature and dysfunctional myeloid cells.
View Article and Find Full Text PDFAlthough genetic testing is increasingly used in clinical nephrology, a large number of patients with congenital abnormalities of the kidney and urinary tract (CAKUT) remain undiagnosed with current gene panels. Therefore, careful curation of novel genetic findings is key to improving diagnostic yields. We recently described a novel intellectual disability syndrome caused by de novo heterozygous loss-of-function mutations in the gene encoding the splicing factor SON.
View Article and Find Full Text PDFThe NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 develop severe thrombocytopenia with lethality resulting from neonatal hemorrhage. Recent data in mammals reveal potential differences in embryonic and adult thrombopoiesis.
View Article and Find Full Text PDFHematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species.
View Article and Find Full Text PDFLipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish.
View Article and Find Full Text PDFHaematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand.
View Article and Find Full Text PDFVitamin D insufficiency is a worldwide epidemic affecting billions of individuals, including pregnant women and children. Despite its high incidence, the impact of active vitamin D3 (1,25(OH)D3) on embryonic development beyond osteo-regulation remains largely undefined. Here, we demonstrate that 1,25(OH)D3 availability modulates zebrafish hematopoietic stem and progenitor cell (HSPC) production.
View Article and Find Full Text PDFThe overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON.
View Article and Find Full Text PDFThis protocol describes the ex vivo characterization of zebrafish hematopoietic progenitors. We show how to isolate zebrafish hematopoietic cells for cultivation and differentiation in colony assays in semi-solid media. We also describe procedures for the generation of recombinant zebrafish cytokines and for the isolation of carp serum, which are essential components of the medium required to grow zebrafish hematopoietic cells ex vivo.
View Article and Find Full Text PDFForward genetic screens in zebrafish have been used to identify genes essential for the generation of primitive blood and the emergence of hematopoietic stem cells (HSCs), but have not elucidated the genes essential for hematopoietic stem and progenitor cell (HSPC) proliferation and differentiation because of the lack of methodologies to functionally assess these processes. We previously described techniques used to test the developmental potential of HSPCs by culturing them on zebrafish kidney stromal (ZKS) cells, derived from the main site of hematopoiesis in the adult teleost. Here we describe an additional primary stromal cell line we refer to as zebrafish embryonic stromal trunk (ZEST) cells, derived from tissue surrounding the embryonic dorsal aorta, the site of HSC emergence in developing fish.
View Article and Find Full Text PDFThe adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium.
View Article and Find Full Text PDFHaematopoietic stem cells (HSCs) derive from haemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to haematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signalling in HSC emergence.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish.
View Article and Find Full Text PDFCalcium ions (Ca(2+)) function as universal second messengers in eukaryotic cells, including immune cells. Ca(2+) is crucial for peripheral T-lymphocyte activation and effector functions, and influences thymocyte selection and motility in the developing thymus. However, the role of Ca(2+) signalling in early T-lymphocyte development is not well understood.
View Article and Find Full Text PDFIn this issue of , Lopez et al undertake the heroic task of characterizing the blood-forming system of the axolotl (), an aquatic salamander that provides an excellent model for tissue regeneration and scar-free wound healing. Commonly referred to as the “Mexican walking fish,” axolotls are not fish at all, but rather neotenic salamanders that retain many larval traits throughout their lifespan because they do not undergo a typical juvenile to adult metamorphosis. This retention of larval traits is associated with the profound ability of the axolotl to regenerate many of its tissues, including limbs, spinal cord, heart, and even parts of its brain.
View Article and Find Full Text PDFIn nonmammalian vertebrates, the functional units of hemostasis are thrombocytes. Thrombocytes are thought to arise from bipotent thrombocytic/erythroid progenitors (TEPs). TEPs have been experimentally demonstrated in avian models of hematopoiesis, and mammals possess functional equivalents known as megakaryocyte/erythroid progenitors (MEPs).
View Article and Find Full Text PDFGranulocyte colony-stimulating factor (Gcsf) drives the proliferation and differentiation of granulocytes, monocytes, and macrophages (mφs) from hematopoietic stem and progenitor cells (HSPCs). Analysis of the zebrafish genome indicates the presence of 2 Gcsf ligands, likely resulting from a duplication event in teleost evolution. Although Gcsfa and Gcsfb share low sequence conservation, they share significant similarity in their predicted ligand/receptor interaction sites and structure.
View Article and Find Full Text PDF