Publications by authors named "David L Schipper"

A myriad of inflammatory cytokines regulate signaling pathways to maintain cellular homeostasis. The IκB kinase (IKK) complex is an integration hub for cytokines that govern nuclear factor κB (NF-κB) signaling. In response to inflammation, IKK is activated through recruitment to receptor-associated protein assemblies.

View Article and Find Full Text PDF

Cellular microenvironments are dynamic. When exposed to extracellular cues, such as changing concentrations of inflammatory cytokines, cells activate signaling networks that mediate fate decisions. Exploring responses broadly to time-varying microenvironments is essential to understand the information transmission capabilities of signaling networks and how dynamic milieus influence cell fate decisions.

View Article and Find Full Text PDF

Target-centric drug development strategies prioritize single-target potency in vitro and do not account for connectivity and multi-target effects within a signal transduction network. Here, we present a systems biology approach that combines transcriptomic and structural analyses with live-cell imaging to predict small molecule inhibitors of TNF-induced NF-κB signaling and elucidate the network response. We identify two first-in-class small molecules that inhibit the NF-κB signaling pathway by preventing the maturation of a rate-limiting multiprotein complex necessary for IKK activation.

View Article and Find Full Text PDF

Although cytokine-dependent dynamics of nuclear factor κB (NF-κB) are known to encode information that regulates cell fate decisions, it is unclear whether single-cell responses are switch-like or encode more information about cytokine dose. Here, we measure the dynamic subcellular localization of NF-κB in response to a range of tumor necrosis factor (TNF) stimulation conditions to determine the prevailing mechanism of single-cell dose discrimination. Using an information theory formalism that accounts for signaling dynamics and non-responsive cell subpopulations, we find that the information transmission capacity of single cells exceeds that predicted from a switch-like response.

View Article and Find Full Text PDF