Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
September 2007
Photocatalytic oxidation (PCO) was investigated in a bench-scale reactor for the abatement of two airborne organic contaminants: toluene and ethanol. A mathematical model that includes the impacts of light intensity, initial contaminant concentration, catalyst thickness, and relative humidity (RH) on the degradation of organic contaminants in a photocatalytic reactor was developed to describe this process. The commercially available catalyst Degussa-PtTiO2 was selected to compare with the MTU-PtTiO2-350 catalyst, which was synthesized by the sol-gel process, platinized, and calcined at 350 degrees C.
View Article and Find Full Text PDFA novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management.
View Article and Find Full Text PDF