Publications by authors named "David L Morse"

Unlabelled: To increase the achievement of negative R0 surgical margins and increase the low survival rates of pancreatic cancer, improvements in assessing tumor margins during surgical resections are needed. This can be accomplished by using pancreatic cancer-targeted fluorescence molecular imaging agents to intraoperatively detect tumor margins in real time. Because Toll-like receptor 2 (TLR2) is broadly expressed among many cancer types including pancreatic adenocarcinomas, a high-affinity TLR2-targeted fluorescence molecular imaging agent (TLR2L-800) was developed.

View Article and Find Full Text PDF

Lipophilicity is explored in the biodistribution (BD), pharmacokinetics (PK), radiation dosimetry (RD), and toxicity of an internally administered targeted alpha-particle therapy (TAT) under development for the treatment of metastatic melanoma. The TAT conjugate is comprised of the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), conjugated to melanocortin receptor 1 specific peptidic ligand (MC1RL) using a linker moiety and chelation of the Ac radiometal. A set of conjugates were prepared with a range of lipophilicities (log values) by varying the chemical properties of the linker.

View Article and Find Full Text PDF

Purpose: There is significant interest in the development of targeted alpha-particle therapies (TATs) for treatment of solid tumors. The metal chelator-peptide conjugate, DOTA-TATE, loaded with the β-particle emitting radionuclide Lu ([Lu]Lu-DOTA-TATE) is now standard care for neuroendocrine tumors that express the somatostatin receptor 2 (SSTR2) target. A recent clinical study demonstrated efficacy of the corresponding [Ac]Ac-DOTA-TATE in patients that were refractory to [Lu]Lu-DOTA-TATE.

View Article and Find Full Text PDF

Targeted α particle therapy (TAT) is ideal for treating disease while minimizing damage to surrounding nontargeted tissues due to short path length and high linear energy transfer (LET). We developed a TAT for metastatic uveal melanoma, targeting the melanocortin-1 receptor (MC1R), which is expressed in 94% of uveal melanomas. Two versions of the therapy are being investigated: Ac-DOTA-Ahx-MC1RL (Ac-Ahx) and Ac-DOTA-di-d-Glu-MC1RL (Ac-di-d-Glu).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is defined as a type of breast cancer with lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor 2 protein. In comparison to other types of breast cancer, TNBC characterizes for its aggressive behavior, more prone to early recurrence and a disease with poor response to molecular target therapy. Although TNBC is identified in only 25%-30% of American breast cancer cases annually, these tumors continue to be a therapeutic challenge for clinicians for several reasons: Tumor heterogeneity, limited and toxic systemic therapy options, and often resistance to current standard therapy, characterized by progressive disease on treatment, residual tumor after cytotoxic chemotherapy, and early recurrence after complete surgical excision.

View Article and Find Full Text PDF

Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer.

View Article and Find Full Text PDF

Using targeted ligands to deliver alpha-emitting radionuclides directly to tumor cells has become a promising therapeutic strategy. To calculate the radiation dose to patients, activities of parent and daughter radionuclides must be measured. Scintillation detectors can be used to quantify these activities; however, activities found in pre-clinical and clinical studies can exceed their optimal performance range.

View Article and Find Full Text PDF

New effective therapies are greatly needed for metastatic uveal melanoma, which has a very poor prognosis with a median survival of less than 1 y. The melanocortin 1 receptor (MC1R) is expressed in 94% of uveal melanoma metastases, and a MC1R-specific ligand (MC1RL) with high affinity and selectivity for MC1R was previously developed. The Ac-DOTA-MC1RL conjugate was synthesized in high radiochemical yield and purity and was tested in vitro for biostability and for MC1R-specific cytotoxicity in uveal melanoma cells, and the lanthanum-DOTA-MC1RL analog was tested for binding affinity.

View Article and Find Full Text PDF

The successful delivery of toxic cargo directly to tumor cells is of primary importance in targeted (α) particle therapy. Complexes of radioactive atoms with the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelating agent are considered as effective materials for such delivery processes. The DOTA chelator displays high affinity to radioactive metal isotopes and retains this capability after conjugation to tumor targeting moieties.

View Article and Find Full Text PDF

Targeted therapy has held promise to be a successful anticancer treatment due to its specificity towards tumor cells that express the target receptors. However, not all targeting drugs used in the clinic are equally effective in tumor eradication. To examine which biochemical and biophysical properties of targeted agents are pivotal for their effective distribution inside the tumor and their efficient cellular uptake, we combine mathematical micro-pharmacological modeling with in vivo imaging of targeted human xenograft tumors in SCID mice.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step.

View Article and Find Full Text PDF

Genomic instability and high mutation rates cause cancer to acquire numerous mutations and chromosomal alterations during its somatic evolution; most are termed passengers because they do not confer cancer phenotypes. Evolutionary simulations and cancer genomic studies suggest that mildly deleterious passengers accumulate and can collectively slow cancer progression. Clinical data also suggest an association between passenger load and response to therapeutics, yet no causal link between the effects of passengers and cancer progression has been established.

View Article and Find Full Text PDF

The theranostic potential of (225)Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of (225)Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy.

View Article and Find Full Text PDF

The expression of cholecystokinin 2 receptor (CCK2R, CCKBR or gastrin receptor) has been reported on a diverse range of cancers such as colorectal, liver, lung, pancreatic, ovarian, stomach, thyroid and numerous neuroendocrine/carcinoid tumors. Some cancers of the colorectum, lung, pancreas and thyroid have been shown to overexpress CCK2R in relation to normal matched tissues of the same organ. This reported overexpression has led to the development of a number of CCK2R-ligand targeted imaging and therapeutic agents.

View Article and Find Full Text PDF

Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance.

View Article and Find Full Text PDF

Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers.

View Article and Find Full Text PDF

Early cancers are avascular and hence, profoundly acidic. Pre-malignant cells must adapt to acidosis to thrive in this hostile microenvironment. Here, we investigate MCF-7 cells that are adapted to grow in acidic conditions using SILAC proteomics and we reveal a significant upregulation of lysosomal proteins.

View Article and Find Full Text PDF

In the United States, lung cancer is the leading cause of cancer death and ranks second in the number of new cases annually among all types of cancers. Better methods or tools for diagnosing and treating this disease are needed to improve patient outcomes. The delta-opioid receptor (δOR) is reported to be overexpressed in lung cancers and not expressed in normal lung.

View Article and Find Full Text PDF

Purpose: Hypoxia is commonly observed in regions of primary tumors and metastases, and is associated with resistance to treatment, more aggressive tumor phenotypes and poor prognosis. Reliable and validated imaging biomarkers of hypoxia are needed for pre-clinical studies and clinical use. Expression of cell-surface carbonic anhydrases IX and XII (CAIX and CAXII) in tumor cells has been associated with tumor hypoxia.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are expressed by immune cells, intestinal epithelium, and tumor cells. In the homeostatic setting, they help to regulate control over invading pathogens and maintain the epithelial lining of the large and small intestines. Aberrant expression of certain TLRs by tumor cells can induce growth inhibition while others contribute to tumorigenesis and progression.

View Article and Find Full Text PDF

Combinations of targeted drugs have been employed to treat sarcomas, however, response rates have not improved notably, therefore emphasizing the need for novel treatments. In addition, imaging approaches to assess therapeutic response is lacking, as currently measurable indices, such as volume and/or diameter, do not accurately correlate with changes in tumor biology. In this study, quantitative and profound analyses of magnetic resonance imaging (MRI) were developed to evaluate these as imaging biomarkers for MK1775 and Gem in an osteosarcoma xenotransplant model at early time-points following treatment.

View Article and Find Full Text PDF

For patients with sarcoma, metastatic disease remains very difficult to cure, and outcomes remain less than optimal. Treatment options have not largely changed, although some promising gains have been made with single agents in specific subtypes with the use of targeted agents. Here, we developed a system to investigate synergy of combinations of targeted and cytotoxic agents in a panel of sarcoma cell lines.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CAIX) which is a zinc containing metalloprotein, efficiently catalyzes the reversible hydration of carbon dioxide. It is constitutively up-regulated in several cancer types and has an important role in tumor progression, acidification and metastasis. High expression of CAIX generally correlates with poor prognosis and is related to a decrease in the disease-free interval following successful therapy.

View Article and Find Full Text PDF

Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe.

View Article and Find Full Text PDF

Recent emphasis has focused on the development of rationally designed polymer-based micelle carriers for drug delivery. The current work tests the hypothesis that target specificity can be enhanced by micelles with cancer-specific ligands. In particular, we describe the synthesis and characterization of a new gadolinium texaphyrin (Gd-Tx) complex encapsulated in an IVECT micellar system, stabilized through Fe(III) cross-linking and targeted with multiple copies of a specific ligand for the melanocortin 1 receptor (MC1R), which has been evaluated as a cell-surface marker for melanoma.

View Article and Find Full Text PDF