Gene therapy has played an integral role in advancing our understanding of the central nervous system. However, gene therapy techniques have yet to be widely utilized in the peripheral nervous system. Critical targets for gene therapy within the PNS are the neurons in sympathetic ganglia, which are the final pathway to end organs.
View Article and Find Full Text PDFStellate ganglionectomy (SGx) was used to assess the contribution of cardiac sympathetic nerves to neurogenic hypertension in deoxycorticosterone (DOCA)-salt treated rats. Experiments were conducted in two substrains of Sprague-Dawley (SD) rats since previous studies reported bradycardia in Charles River-SD (CR-SD) rats and tachycardia in SASCO-SD (SA-SD) rats with DOCA treatment suggesting different underlying neural mechanisms. Uninephrectomized male rats underwent SGx or SHAM surgery and were instrumented for telemetric monitoring of mean arterial pressure (MAP) and heart rate (HR).
View Article and Find Full Text PDFUptake of norepinephrine via the neuronal norepinephrine transporter is reduced in the heart during deoxycorticosterone (DOCA)-salt hypertension. We hypothesized that this was due to reduced norepinephrine transporter mRNA and/or protein expression in the stellate ganglia and heart. After 4 weeks of DOCA-salt treatment there was no change in norepinephrine transporter mRNA in either the right or the left stellate ganglia from hypertensive rats (n=5-7, p>0.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2008
Cardiac sympathetic nerve activity is an important short-term controller of cardiac function and arterial pressure. Studies also suggest that long-term increases in cardiac sympathetic nerve activity may contribute to hypertension, coronary artery disease, and cardiac remodeling in heart failure. However, our understanding of the role of cardiac sympathetic nerves in chronic models of cardiovascular disease has been limited by inadequate experimental approaches.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2008
The cardiac neuronal norepinephrine (NE) transporter (NET) in sympathetic neurons is responsible for uptake of released NE from the neuroeffector junction. The purpose of this study was to assess the chamber distribution of cardiac NET protein measured using [(3)H]nisoxetine binding in rat heart membranes and to correlate NE content to NET amount. In whole mounts of atria, NET was colocalized in nerve fibers with tyrosine hydroxylase (TH) immunoreactivity.
View Article and Find Full Text PDFWe demonstrated recently that superoxide anion levels are elevated in prevertebral sympathetic ganglia of deoxycorticosterone acetate-salt hypertensive rats and that this superoxide anion is generated by reduced nicotinamide-adenine dinucleotide phosphate oxidase. In this study we compared the reduced nicotinamide-adenine dinucleotide phosphate oxidase enzyme system of dorsal root ganglion (DRG) and sympathetic celiac ganglion (CG) and its regulation in hypertension. The reduced nicotinamide-adenine dinucleotide phosphate oxidase activity of ganglion extracts was measured using fluorescence spectrometry of dihydroethidine; the activity in hypertensive dorsal root ganglion was 34% lower than in normotensive DRG.
View Article and Find Full Text PDFCapillary electrophoresis with end-column amperometric detection (CE-EC) was used to determine the regional distribution of norepinephrine (NE) in the hearts of sympathetically innervated (control) and chemically sympathectomized rats. Key features of the method are (i) the sample preparation and clean-up step that involved the application of off-line solid phase extraction (SPE) with a 95% NE recovery and (ii) the use of a diamond microelectrode for detection. NE was quantified in the left and right ventricle, the ventricular septum, and the left and right atrium.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2006
Statins have recently been shown to exert neuronal protection in ischemic stroke. Reactive oxygen species, specifically superoxide formed during the early phase of reperfusion, augment neuronal injury. NADPH oxidase is a key enzyme for superoxide production.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2006
Superoxide anion (O2-*) production is elevated in sympathetic ganglion neurons and in the vasculature of hypertensive animals; however, it is not known what enzymatic pathway(s) are responsible for O2-* production. To determine the pathway(s) of O2-* production in sympathetic neurons, we examined the presence of mRNA of NADPH oxidase subunits in sympathetic ganglionic neurons and differentiated PC-12 cells. The mRNAs for NADPH oxidase subunits p47phox, p22phox, gp91phox, and NOX1 were present in sympathetic neurons and PC-12 cells, whereas the NOX4 homologue was present in sympathetic neurons but not PC-12 cells.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2006
Dai and colleagues (Dai X, Galligan JJ, Watts SW, Fink GD, and Kreulen DL. Hypertension 43: 1048-1054, 2004) found that endothelin (ET) stimulated O2- production in sympathetic ganglion neurons in vitro by activating ET(B) receptors. The objective of the present study was to determine whether activation of ET(B) receptors in vivo elevates O2- levels in sympathetic ganglia.
View Article and Find Full Text PDFSuperoxide anion (O2*-) production is elevated in the vasculature of hypertensive animals but it is not known if O2*- production is also elevated in the sympathetic nervous system. We measured O2*- levels in prevertebral sympathetic ganglia of deoxycorticosterone acetate (DOCA)-salt hypertensive rats using the dihydroethidine (DHE) fluorescence method. O2*- was elevated in ganglia from DOCA-salt rats compared with normotensive sham rats.
View Article and Find Full Text PDFJ Smooth Muscle Res
December 2003
Sympathetic control of arteries and veins may be altered in hypertension. To test this hypothesis, constrictions of mesenteric arteries and veins caused by nerve stimulation and by norepinephrine (NE) and ATP were studied in vitro in tissues from deoxycorticosterone acetate (DOCA)-salt hypertensive and sham normotensive rats. In DOCA-salt arteries, the maximum neurogenic response was greater than that in sham arteries.
View Article and Find Full Text PDF