Inertial Microcavitation Rheometry (IMR) is a promising tool for characterizing the mechanical behavior of soft materials at high strain rates. In IMR, an isolated, spherical microbubble is generated inside a soft material, using either a spatially-focused pulsed laser or focused ultrasound, to probe the mechanical behavior of the soft material at high strain rates (>10 s). Then, a theoretical modeling framework for inertial microcavitation, incorporating all the dominant physics, is used to extract information regarding the mechanical behavior of the soft material by fitting model predictions to the experimentally measured bubble dynamics.
View Article and Find Full Text PDFInertial cavitation in soft matter is an important phenomenon featured in a wide array of biological and engineering processes. Recent advances in experimental, theoretical, and numerical techniques have provided access to a world full of nonlinear physics, yet most of our quantitative understanding to date has been centered on a spherically symmetric description of the cavitation process in water. However, cavitation bubble growth and collapse rarely occur in a perfectly symmetrical fashion, particularly in soft materials.
View Article and Find Full Text PDFShear flow in one spatial region of a dense granular material-induced, for example, through the motion of a boundary-fluidizes the entire granular material. One consequence is that the yield condition vanishes throughout the granular material-even in regions that are very far from the "primary," boundary-driven shear flow. This phenomenon may be characterized through the mechanics of intruders embedded in the granular medium.
View Article and Find Full Text PDFExperimental observations of the growth and collapse of acoustically and laser-nucleated single bubbles in water and agarose gels of varying stiffness are presented. The maximum radii of generated bubbles decreased as the stiffness of the media increased for both nucleation modalities, but the maximum radii of laser-nucleated bubbles decreased more rapidly than acoustically nucleated bubbles as the gel stiffness increased. For water and low stiffness gels, the collapse times were well predicted by a Rayleigh cavity, but bubbles collapsed faster than predicted in the higher stiffness gels.
View Article and Find Full Text PDFThe flow threshold in dense granular materials is typically modeled by local, stress-based criteria. However, grain-scale cooperativity leads to size effects that cannot be captured with local conditions. In a widely studied example, flows of thin layers of grains down an inclined surface exhibit a size effect whereby thinner layers require more tilt to flow.
View Article and Find Full Text PDFRecent dense granular flow experiments have shown that shear deformation in one region of a granular medium fluidizes its entirety, including regions far from the sheared zone, effectively erasing the yield condition everywhere. This enables slow creep deformation to occur when an external force is applied to a probe in the nominally static regions of the material. The apparent change in rheology induced by far-away motion is termed the "secondary rheology," and a theoretical rationalization of this phenomenon is needed.
View Article and Find Full Text PDFFlows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface.
View Article and Find Full Text PDFNative cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions.
View Article and Find Full Text PDFSurface energy is an important factor in the deformation of fluids but is typically a minimal or negligible effect in solids. However, when a solid is soft and its characteristic dimension is small, forces due to surface energy can become important and induce significant elastic deformation. The interplay between surface energy and elasticity can lead to interesting elasto-capillary phenomena.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
We propose and validate a three-dimensional continuum modeling approach that predicts small-amplitude acoustic behavior of dense-packed granular media. The model is obtained through a joint experimental and finite-element study focused on the benchmark example of a vibrated container of grains. Using a three-parameter linear viscoelastic constitutive relation, our continuum model is shown to quantitatively predict the effective mass spectra in this geometry, even as geometric parameters for the environment are varied.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2013
Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular flow, posing an obstacle in industrial and geophysical applications. Here we propose a 3D constitutive model for well-developed, dense granular flows aimed at filling this need.
View Article and Find Full Text PDF