Three-dimensional (3D) cell culture in vitro promises to improve representation of neuron physiology in vivo. This inspired development of a 3D culture platform for LUHMES (Lund Human Mesencephalic) dopaminergic neurons for high-throughput screening (HTS) of chemicals for neurotoxicity. Three culture platforms, adhesion (2D-monolayer), 3D-suspension, and 3D-shaken, were compared to monitor mRNA expression of seven neuronal marker genes, DCX, DRD2, ENO2, NEUROD4, SYN1, TH, and TUBB3.
View Article and Find Full Text PDFA new safety testing paradigm that relies on gene expression biomarker panels was developed to easily and quickly identify drug-induced injuries across tissues in rats prior to drug candidate selection. Here, we describe the development, qualification, and implementation of gene expression signatures that diagnose tissue degeneration/necrosis for use in early rat safety studies. Approximately 400 differentially expressed genes were first identified that were consistently regulated across 4 prioritized tissues (liver, kidney, heart, and skeletal muscle), following injuries induced by known toxicants.
View Article and Find Full Text PDFTo clarify how smoking leads to heart attack and stroke, we developed an endothelial cell model (iECs) generated from human induced Pluripotent Stem Cells (iPSC) and evaluated its responses to tobacco smoke. These iECs exhibited a uniform endothelial morphology, and expressed markers /CD31, von Willebrand Factor, and /VE-Cadherin. The iECs also exhibited tube formation and acetyl-LDL uptake comparable to primary endothelial cells (EC).
View Article and Find Full Text PDFChanges in gene expression can help reveal the mechanisms of disease processes and the mode of action for toxicities and adverse effects on cellular responses induced by exposures to chemicals, drugs and environment agents. The U.S.
View Article and Find Full Text PDFA chemical genomics "Toxmatrix" method was developed to elucidate mechanisms of cytotoxicity using neuronal models. Quantitative high-throughput screening (qHTS) was applied to systematically screen each toxicant against a panel of 70 modulators, drugs or chemicals that act on a known target, to identify interactions that either protect or sensitize cells to each toxicant. Thirty-two toxicants were tested at 10 concentrations for cytotoxicity to SH-SY5Y human neuroblastoma cells, with results fitted to the Hill equation to determine an IC for each toxicant.
View Article and Find Full Text PDFComparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of nknown or ariable composition, omplex reaction products, and iological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments.
View Article and Find Full Text PDFThe Predictive Safety Testing Consortium's first regulatory submission to qualify kidney safety biomarkers revealed two deficiencies. To address the need for biomarkers that monitor recovery from agent-induced renal damage, we scored changes in the levels of urinary biomarkers in rats during recovery from renal injury induced by exposure to carbapenem A or gentamicin. All biomarkers responded to histologic tubular toxicities to varied degrees and with different kinetics.
View Article and Find Full Text PDFThe capacities of urinary trefoil factor 3 (TFF3) and urinary albumin to detect acute renal tubular injury have never been evaluated with sufficient statistical rigor to permit their use in regulated drug development instead of the current preclinical biomarkers serum creatinine (SCr) and blood urea nitrogen (BUN). Working with rats, we found that urinary TFF3 protein levels were markedly reduced, and urinary albumin were markedly increased in response to renal tubular injury. Urinary TFF3 levels did not respond to nonrenal toxicants, and urinary albumin faithfully reflected alterations in renal function.
View Article and Find Full Text PDFThe first formal qualification of safety biomarkers for regulatory decision making marks a milestone in the application of biomarkers to drug development. Following submission of drug toxicity studies and analyses of biomarker performance to the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) by the Predictive Safety Testing Consortium's (PSTC) Nephrotoxicity Working Group, seven renal safety biomarkers have been qualified for limited use in nonclinical and clinical drug development to help guide safety assessments. This was a pilot process, and the experience gained will both facilitate better understanding of how the qualification process will probably evolve and clarify the minimal requirements necessary to evaluate the performance of biomarkers of organ injury within specific contexts.
View Article and Find Full Text PDFPhospholipidosis (PLD) is an accumulation of phospholipids in lysosome-derived multilamellar vesicles. More than 50 commercial drugs are known to cause PLD. In vitro screening assays were developed in HepG2 cells, rat primary hepatocytes, and rhesus monkey hepatocytes using the fluorescent-labeled phospholipid probe N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) or Nile Red lipid stain.
View Article and Find Full Text PDFToxicogenomics can measure the expression of thousands of genes to identify changes associated with drug induced toxicities. It is expected that toxicogenomics can be an alternative or complementary approach in preclinical drug safety evaluation to identify or predict drug induced toxicities. One of the major concerns in applying toxicogenomics to diagnose or predict drug induced organ toxicity, is how generalizable the statistical classification model is when derived from small datasets? Here we presented that a diagnosis of kidney proximal tubule toxicity, measured by pathology, can successfully be achieved even with a study design of limited number of training studies or samples.
View Article and Find Full Text PDFStandard controls and best practice guidelines advance acceptance of data from research, preclinical and clinical laboratories by providing a means for evaluating data quality. The External RNA Controls Consortium (ERCC) is developing commonly agreed-upon and tested controls for use in expression assays, a true industry-wide standard control.
View Article and Find Full Text PDFDNA microarrays are an integral part of the process for therapeutic discovery, optimization and clinical validation. At an early stage, investigators use arrays to prioritize a few genes as potential therapeutic targets on the basis of various criteria. Subsequently, gene expression analysis assists in drug discovery and toxicology by eliminating poor compounds and optimizing the selection of promising leads.
View Article and Find Full Text PDFBackground: Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord.
View Article and Find Full Text PDFPPAR gamma is an adipocyte-specific nuclear hormone receptor. Agonists of PPAR gamma, such as thiazolidinediones (TZDs), promote adipocyte differentiation and have insulin-sensitizing effects in animals and diabetic patients. Affymetrix oligonucleotide arrays representing 6347 genes were employed to profile the gene expression responses of mature 3T3-L1 adipocytes and differentiating preadipocytes to a TZD PPAR gamma agonist in vitro.
View Article and Find Full Text PDF