Publications by authors named "David L Boyle"

Some autoimmune diseases, including rheumatoid arthritis (RA), are preceded by a critical subclinical phase of disease activity. Proactive clinical management is hampered by a lack of biological understanding of this subclinical 'at-risk' state and the changes underlying disease development. In a cross-sectional and longitudinal multi-omics study of peripheral immunity in the autoantibody-positive at-risk for RA period, we identified systemic inflammation, proinflammatory-skewed B cells, expanded Tfh17-like cells, epigenetic bias in naive T cells, TNF+IL1B+ monocytes resembling a synovial macrophage population, and CD4 T cell transcriptional features resembling those suppressed by abatacept (CTLA4-Ig) in RA patients.

View Article and Find Full Text PDF

Objective: The presence of autoantibodies to citrullinated protein antigens (ACPAs) in the absence of clinically-apparent inflammatory arthritis (IA) identifies individuals "at-risk" for developing future clinical rheumatoid arthritis (RA). However, it is unclear why some ACPA+ individuals convert to clinical RA while others do not. We explored the possibility in the Targeting Immune Responses for Prevention of Rheumatoid Arthritis (TIP-RA) study that epigenetic remodeling is part of the trajectory from an at-risk state to clinical disease and identifies novel biomarkers associated with conversion to clinical RA.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic immune-mediated disease characterized by joint inflammation and destruction. The disease typically affects small joints in the hands and feet, later progressing to involve larger joints such as the knees, shoulders, and hips. While the reasons for these joint-specific differences are unclear, distinct epigenetic patterns associated with joint location have been reported.

View Article and Find Full Text PDF
Article Synopsis
  • Fibroblast-like synoviocytes (FLS) play a crucial role in the development of rheumatoid arthritis (RA) through the activation of the inflammatory factor NF-κB, and the study examines the role of NUB1 and neddylation in this process.
  • Research involved comparing RA FLS to osteoarthritis (OA) FLS using multiple analysis techniques to assess gene and protein regulation, including the effects of interleukin (IL)-1β on NF-κB activity and neddylation inhibition.
  • Results showed that abnormalities in NUB1 and neddylation are present in RA FLS, contributing to their aggressive behavior, and targeting the neddylation process could be a potential new
View Article and Find Full Text PDF

Molecular markers of autoimmunity, such as antibodies to citrullinated protein antigens (ACPA), are detectable prior to inflammatory arthritis (IA) in rheumatoid arthritis (RA) and may define a state that is 'at-risk' for future RA. Here we present a cross-sectional comparative analysis among three groups that include ACPA positive individuals without IA (At-Risk), ACPA negative individuals and individuals with early, ACPA positive clinical RA (Early RA). Differential methylation analysis among the groups identifies non-specific dysregulation in peripheral B, memory and naïve T cells in At-Risk participants, with more specific immunological pathway abnormalities in Early RA.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B cells, which promote synovial inflammation through a complex set of interactions with innate immune and stromal cells. To better understand the phenotypes and clonal relationships of synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs).

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an immune-mediated disease affecting diarthrodial joints that remains an unmet medical need despite improved therapy. This limitation likely reflects the diversity of pathogenic pathways in RA, with individual patients demonstrating variable responses to targeted therapies. Better understanding of RA pathogenesis would be aided by a more complete characterization of the disease.

View Article and Find Full Text PDF

Objective: To improve the fidelity of the cellular transcriptome of disaggregated synovial tissue for applications such as single-cell RNA sequencing (scRNAseq) by modifying the disaggregation technique.

Methods: Osteoarthritis (OA) and rheumatoid arthritis (RA) synovia were collected at arthroplasty. RNA was extracted from intact or disaggregated replicate pools of tissue fragments.

View Article and Find Full Text PDF

Humans and rodents have sexually dimorphic immune responses, which could influence the brain's response to a systemic inflammatory insult. Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood-brain barrier (BBB) dysfunction under inflammatory conditions. Therefore, we examined whether inflammatory response to LPS and the associated BBB disruption differed in male and female adult rats.

View Article and Find Full Text PDF

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity.

View Article and Find Full Text PDF

The content and organization of hyaluronan (HA) in the extracellular matrix (ECM) have been identified as strong indicators of inflammation in joint disease, although the source and role of HA as an effector of inflammation is not clear. In this study, we established co-cultures of activated human CD4 T cells with fibroblast-like synoviocytes (FLS) from osteoarthritis (OA) and rheumatoid arthritis (RA) subjects and examined the role of HA in promoting inflammatory events. Co-cultures of RA FLS with activated CD4 T cells generated an HA-enriched ECM that promoted enhanced monocyte adhesion compared to co-cultures of OA FLS with activated CD4 T cells.

View Article and Find Full Text PDF

Objective: Fibroblast-like synoviocytes (FLS) play a pivotal role in rheumatoid arthritis (RA) by contributing to synovial inflammation and progressive joint damage. An imprinted epigenetic state is associated with the FLS aggressive phenotype. We identified CASP8 (encoding for caspase-8) as a differentially marked gene and evaluated its pathogenic role in RA FLSs.

View Article and Find Full Text PDF

Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus.

View Article and Find Full Text PDF

We described a human regulatory T cell (Treg) population activated by IgG B cells presenting peptides of the heavy C region (Fc) via processing of the surface IgG underlying a model for B cell-Treg cooperation in the human immune regulation. Functionally, Treg inhibited the polarization of naive T cells toward a proinflammatory phenotype in both a cognate and a noncognate fashion. Their fine specificities were similar in healthy donors and patients with rheumatoid arthritis, a systemic autoimmune disease.

View Article and Find Full Text PDF

Objective: To study epigenetic patterns in T lymphocytes that accumulate in the rheumatoid arthritis (RA) synovium, we characterized DNA methylation of CD3 T cells in peripheral blood and synovial tissue in patients with RA and osteoarthritis (OA).

Methods: Genomic DNA of CD3 T cells was isolated from patients with RA (n = 8) and OA (n = 5) from blood or the synovium at the time of an arthroplasty using antibodies and magnetic beads. Methylation was measured by using the Illumina Infinium MethylationEPIC Kit.

View Article and Find Full Text PDF

Background: Many studies have investigated the role of the microbiome in inflammatory bowel disease (IBD), but few have focused on surgery specifically or its consequences on the metabolome that may differ by surgery type and require longitudinal sampling. Our objective was to characterize and contrast microbiome and metabolome changes after different surgeries for IBD, including ileocolonic resection and colectomy.

Methods: The UC San Diego IBD Biobank was used to prospectively collect 332 stool samples from 129 subjects (50 ulcerative colitis; 79 Crohn's disease).

View Article and Find Full Text PDF

Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression.

View Article and Find Full Text PDF

Background And Aims: Oral systemic pan-Janus kinase [JAK] inhibition is effective for ulcerative colitis [UC] but is limited by toxicities. We describe preclinical to clinical translation of TD-1473-an oral gut-selective pan-JAK inhibitor-from in vitro characterization through a Phase 1b study in patients with UC.

Methods: TD-1473 JAK inhibition potency was evaluated in vitro; plasma pharmacokinetics, safety and efficacy were assessed in mice.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) derived from hip and knee have distinctive DNA methylation and transcriptome patterns in interleukin (IL)-6 signaling and Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. To determine the functional effects of these joint-specific signatures, we evaluated how RA hip and knee FLS differ in their response to IL-6.

Methods: Hip or knee RA FLS were obtained after arthroplasty.

View Article and Find Full Text PDF

Objective: In gout, autoinflammatory responses to urate crystals promote acute arthritis flares, but the pathogeneses of tophi, chronic synovitis, and erosion are less well understood. Defining the pathways of epigenomic immunity training can reveal novel pathogenetic factors and biomarkers. The present study was undertaken to seminally probe differential DNA methylation patterns utilizing epigenome-wide analyses in patients with gout.

View Article and Find Full Text PDF

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)HLA-DRA sublining fibroblasts, IL1B pro-inflammatory monocytes, ITGAXTBX21 autoimmune-associated B cells and PDCD1 peripheral helper T (T) cells and follicular helper T (T) cells.

View Article and Find Full Text PDF

Objective: We aimed to understand the role of the tyrosine phosphatase PTPN14-which in cancer cells modulates the Hippo pathway by retaining YAP in the cytosol-in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA).

Methods: Gene/protein expression levels were measured by quantitative PCR and/or Western blotting. Gene knockdown in RA FLS was achieved using antisense oligonucleotides.

View Article and Find Full Text PDF

Objective/design: In a double-blind, placebo-controlled, multiple-dose study, we assessed the molecular mechanism of action of the selective histamine-4-receptor antagonist toreforant.

Patients/treatment: Patients with active rheumatoid arthritis (RA) despite methotrexate were randomized (3:1) to toreforant 30 mg/day (weeks 0-52) or placebo (weeks 0-12) followed by toreforant 30 mg/day (weeks 12-52).

Methods: Primary biomarker analyses comprised 39 different proteins/mRNA transcripts measured in synovial biopsy (n = 39) and/or time-matched serum (n = 15) samples collected at baseline and week 6.

View Article and Find Full Text PDF

Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples.

View Article and Find Full Text PDF