Publications by authors named "David L Baillie"

Precise arrangement of actin, myosin, and other regulatory components in a sarcomeric pattern is critical for producing contractile forces in striated muscles. Actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), is one of essential factors that regulate sarcomeric assembly of actin filaments. In the nematode , mutation in , encoding one of the two AIP1 isoforms, causes severe disorganization of sarcomeric actin filaments and near paralysis, but mutation in suppresses the mutant phenotypes to restore nearly normal sarcomeric actin organization and worm motility.

View Article and Find Full Text PDF

Among many essential genes in the nematode Caenorhabditis elegans, let-330 is located on the left arm of chromosome V and was identified as the largest target of a mutagen in this region. However, let-330 gene has not been characterized at the molecular level. Here, we report that two sequenced let-330 alleles are nonsense mutations of ketn-1, a previously characterized gene encoding kettin.

View Article and Find Full Text PDF

Background: Essential genes are required for an organism's viability and their functions can vary greatly, spreading across many pathways. Due to the importance of essential genes, large scale efforts have been undertaken to identify the complete set of essential genes and to understand their function. Studies of genome architecture and organization have found that genes are not randomly disturbed in the genome.

View Article and Find Full Text PDF
Article Synopsis
  • Combined genetic mapping and sequencing identified 60 essential genes linked to 104 lethal mutations across two regions of chromosomes III and V, with some genes previously unassociated with lethality.
  • Analysis revealed four potential new protein domains and showed that most essential genes encode for enzymes, particularly involved in nucleic acid binding and fundamental cellular processes like DNA replication and translation.
  • The study highlights that essential genes exhibit traits similar to human disease genes, with a significant overlap (90%) in human orthologs, emphasizing their relevance for understanding human diseases.
View Article and Find Full Text PDF

Phylogeny is often used to compare entire families of genes/proteins. We previously showed that classification of Caenorhabditis elegans Rho GTPases on the basis of their enzymatic properties was significantly different from sequence alignments. To further develop this concept, we have developed an integrated approach to classify C.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how muscle protein degradation occurs in the nematode C. elegans, focusing on the role of UNC-105/degenerin channel activation and its effects on muscle function.
  • Methods included creating genetic mutants, using RNA interference, and performing enzyme assays to evaluate the molecular processes involved in protein degradation and mitochondrial function.
  • Results indicate that enhanced activity of the UNC-105 channel leads to muscle degradation and movement issues, linked to mitochondrial dysfunction and a specific degradation pathway involving caspases, highlighting implications for muscle decline in aging populations.
View Article and Find Full Text PDF

Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes.

View Article and Find Full Text PDF

Cytoplasmic methionyl tRNA synthetase (MetRS) is one of more than 20 cytoplasmic aminoacyl tRNA synthetase enzymes (ARS). This family of enzymes catalyzes a process fundamental for protein translation. Using a combination of genetic mapping, oligonucleotide array comparative genomic hybridization, and phenotypic correlation, we show that mutations in the essential gene, let-65, reside within the predicted Caenorhabditis elegans homologue of MetRS, which we have named mars-1.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on identifying essential genes in the organism Caenorhabditis elegans, which are crucial for development and linked to various human diseases.
  • Researchers utilized whole genome sequencing on mutant strains to find mutations responsible for lethality, successfully identifying 64 essential genes characterized by various mutation types.
  • The findings provide a valuable genetic resource for further research on essential gene functions, contributing to our understanding of development and potential implications for human health.
View Article and Find Full Text PDF

The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the 'metazoanome'), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types.

View Article and Find Full Text PDF

The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C.

View Article and Find Full Text PDF

There has been growing interest in disrupting bacterial virulence mechanisms as a form of infectious disease control through the use of 'anti-infective' drugs. Pseudomonas aeruginosa is an opportunistic pathogen noted for its intrinsic antibiotic resistance that causes serious infections requiring new therapeutic options. In this study, an analysis of the P.

View Article and Find Full Text PDF

Curation of a high-quality gene set is the critical first step in genome research, enabling subsequent analyses such as ortholog assignment, cis-regulatory element finding, and synteny detection. In this project, we have reannotated the genome of Caenorhabditis briggsae, the best studied sister species of the model organism Caenorhabditis elegans. First, we applied a homology-based gene predictor genBlastG to annotate the C.

View Article and Find Full Text PDF

Suppressor screens are an invaluable method for identifying novel genetic interactions between genes in the model organism Caenorhabditis elegans. However, traditionally this approach has suffered from the laborious and protracted process of mapping mutations at the molecular level. Using a mutagen known to generate small deletions, coupled with oligoarray comparative genomic hybridization (aCGH), we have identified mutations in two genes that suppress the lethality associated with a mutation of the essential receptor tyrosine kinase rol-3.

View Article and Find Full Text PDF

The Ataxia-telangiectasia-mutated (ATM) gene in humans was identified as the basis of a rare autosomal disorder leading to cancer susceptibility and is now well known as an important signal transducer in response to DNA damage. An approach to understanding the conserved functions of this gene is provided by the model system, Caenorhabditis elegans. In this paper we describe the structure and loss of function phenotype of the ortholog atm-1.

View Article and Find Full Text PDF

The issue of heterozygosity continues to be a challenge in the analysis of genome sequences. In this article, we describe the use of allele ratios to distinguish biologically significant single-nucleotide variants from background noise. An application of this approach is the identification of lethal mutations in Caenorhabditis elegans essential genes, which must be maintained by the presence of a wild-type allele on a balancer.

View Article and Find Full Text PDF

In humans, mutations of a growing list of regulatory factor X (RFX) target genes have been associated with devastating genetics disease conditions including ciliopathies. However, mechanisms underlying RFX transcription factors (TFs)-mediated gene expression regulation, especially differential gene expression regulation, are largely unknown. In this study, we explore the functional significance of the co-existence of multiple X-box motifs in regulating differential gene expression in Caenorhabditis elegans.

View Article and Find Full Text PDF

Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos.

View Article and Find Full Text PDF

Background: A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension.

View Article and Find Full Text PDF

mdf-1/MAD1 is a conserved spindle assembly checkpoint component that is essential for the survival of Caenorhabditis elegans. Previously, using a dog-1(gk10)/FANCJ mutator strain, we have isolated a suppressor of mdf-1(gk2) sterility. This suppressor, named such-4, was demonstrated to be a tandem duplication that contained 62 putative protein coding genes.

View Article and Find Full Text PDF

Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots and significant variation in hotspot usage exists between and among individuals.

View Article and Find Full Text PDF

Background: The spindle assembly checkpoint (SAC) delays anaphase onset by inhibiting the activity of the anaphase promoting complex/cyclosome (APC/C) until all of the kinetochores have properly attached to the spindle. The importance of SAC genes for genome stability is well established; however, the roles these genes play, during postembryonic development of a multicellular organism, remain largely unexplored.

Results: We have used GFP fusions of 5' upstream intergenic regulatory sequences to assay spatiotemporal expression patterns of eight conserved genes implicated in the spindle assembly checkpoint function in Caenorhabditis elegans.

View Article and Find Full Text PDF

Background: Intraflagellar transport (IFT) genes, which are critical for the development and function of cilia and flagella in metazoans, are tightly regulated by the Regulatory Factor X (RFX) transcription factors (TFs). However, how and when their evolutionary relationship was established remains unknown.

Results: We have identified evidence suggesting that RFX TFs and IFT genes evolved independently and their evolution converged before the first appearance of metazoans.

View Article and Find Full Text PDF

UNC-51 is a serine/threonine protein kinase conserved from yeast to humans. The yeast homolog Atg1 regulates autophagy (catabolic membrane trafficking) required for surviving starvation. In C.

View Article and Find Full Text PDF

The specification and patterning of vulval precursor cells (VPCs) in Caenorhabditiselegans is achieved using a conserved EGFR/RAS signaling pathway that is activated by the ligand lin-3/EGF, which is secreted by the neighboring somatic gonad. Previous work has demonstrated that the expression of lin-3 must be tightly regulated to ensure that only three of six equivalent VPCs are induced to differentiate into the mature vulva. Here, we have identified a novel regulator of EGFR/RAS signaling, let-765/nsh-1, that functions upstream of the pathway to promote vulval induction.

View Article and Find Full Text PDF