To explore the possibility of applying lignin in practice, an industrial lignosulfonate (0-50 vol%) was blended with four ionomers. The concentrations of carboxyl and carboxylate groups were systematically varied in the ethylene-acrylic acid copolymers to study the competition of hydrogen and ionic bonds forming between the components. The mechanical properties of the blends were determined by tensile testing.
View Article and Find Full Text PDFPolymers (Basel)
September 2021
Composite films were fabricated by using cellulose nanocrystals (CNCs) as reinforcement up to 50 wt% in thermoplastic starch (TPS). Structure and interactions were modified by using different types (glycerol and sorbitol) and different amounts (30 and 40%) of plasticizers. The structure of the composites was characterized by visible spectroscopy, Haze index measurements, and scanning electron microscopy.
View Article and Find Full Text PDFThis paper presents a comprehensive study about the application of a lignocellulosic agricultural waste, sunflower husk in different polymer composites. Two types of milled sunflower husk with different geometrical factors were incorporated into polypropylene, low-density and high-density polyethylene, polystyrene (PS), glycol-modified polyethylene terephthalate (PETG) and polylactic acid (PLA). The filler content of the composites varied between 0 and 60 vol%.
View Article and Find Full Text PDFFrom the suspensions of cellulose nanocrystals (CNCs) derived from cotton and flax by acidic hydrolysis, transparent and smooth films were produced with different plasticizers and an amino-aldehyde based cross-linking agent in a wide composition range by a simultaneous casting and wet cross-linking process. The effect of cross-linker concentration on the optical and tensile properties and on the morphology of CNC films was investigated by various measurements. The interaction of films with liquid water and water vapour was also characterized by water sorption and water contact angle as well as performing a sinking test.
View Article and Find Full Text PDFInt J Biol Macromol
February 2018
Blends were prepared from lignin and ethylene-vinyl alcohol (EVOH) copolymers to study the effect of hydrogen bonding interactions on compatibility and structure. The vinyl alcohol (VOH) content of the copolymers changed between 52 and 76 mol%, while the lignin content of the blends varied between 0 and 60 vol%. Low density polyethylene with 0 mol% VOH content was used as reference.
View Article and Find Full Text PDF