The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination.
View Article and Find Full Text PDFThere is an unprecedented opportunity to move advanced practice nurses (APNs) into primary care settings at a steady rate over the next 5 to 8 years. In addition, the opportunity for nurse-owned or nurse-led practices has never been greater. However, many APNs currently work in a structured environment where the employer focuses on the business aspects of the practice and the APN focuses primarily on clinical care.
View Article and Find Full Text PDFPurpose: The development of novel biomarkers is an unmet need in chronic obstructive pulmonary disease (COPD). Arterial blood comes directly from the lung and venous blood drains capillary beds of the organ or tissue supplied. We hypothesized that there would be a difference in levels of the biomarkers metalloproteinase 9 (MMP-9), vascular endothelial growth factor A (VEGF-A) and interleukin 6 (IL-6) in arterial compared with venous blood.
View Article and Find Full Text PDFInvestigation of therapy naïve human tumor and adjacent normal tissue biopsies demonstrated that expression levels of miRNAs are altered at and between stages of CRC. Targets of these altered miRNAs are members of the Insulin signaling pathways. Phosphorylation states of several molecules in the Insulin signaling pathways were altered between stages of CRC, and significantly the change in molecular phosphorylation state correlated with decreases in specific miRNAs that target them.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2004
Regional changes occur in the sympathetic innervation of the heart after myocardial infarction (MI), including loss of norepinephrine (NE) uptake and depletion of neuronal NE. This apparent denervation is accompanied by increased cardiac NE spillover. One potential explanation for these apparently contradictory findings is that the sympathetic neurons innervating the heart are exposed to environmental stimuli that alter neuronal function.
View Article and Find Full Text PDFAlthough the sympathetic neurons innervating the heart are exposed to the inflammatory cytokines cardiotrophin-1 (CT-1), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFalpha) after myocardial infarction, the effects of these cytokines on noradrenergic function are not well understood. We used cultured sympathetic neurons to investigate the effects of these cytokines on catecholamine content, the tyrosine hydroxylase co-factor, tetrahydrobiopterin (BH4), and norepinephrine (NE) uptake. CT-1, but not IL-6 or TNFalpha, suppressed NE uptake and catecholamines in these neurons, whereas CT-1 and, to a lesser extent, IL-6 decreased BH4 content.
View Article and Find Full Text PDF